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A Fixed-Grid Finite Volume Approach to Convection—Dominated
Phase Change Problems
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ABSTRACT

A fixed-grid finite volume numerical approach is developed to simulale physical details of convection

~dominated phase change problems. This approach adopts the enthalpy-porosity method associated with new

algorithms that is devised to track the phase front efficiently. A comparative analysis with transformed- and

fixed-grid approaches is performed to demonstrate the predictability of the presented model. Results of a

melting and solidification experiments are used to assess and evaluate the performance of the model.
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I . INTRODUCTION

The analvsis on the melting and solidification
has received a great attention in last several
decades.[1] The natural convection in the melt due
to the temperature difference can significantly
affect the phase change process and then the
morphology of the solid-liquid interface is influ-
enced by changing the flow structure in the melt.

This study attempts a numerical analysis on

convection-dominated phase change problem with
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the fixed-grid method, which uses a single set of
conservation equations and boundary conditions
for the whole domain comprising the solid and
liquid phases. In this method, the interface condi-
tions are described as suitable source terms in the
governing equations to avoid explicit treatment of
the interface. Upon phase changing. the latent heat
absorption, or evolution, is reflected as a source, or
sink, term in the energy equation. Also, the
fixed—grid requires the velocity suppression becau-
se as a liquid region tums solid, the zero-velocity
condition should be satisfied. The velocity suppre-
ssion is accomplished by a suitable source term in
the momentum equation to model the two-phase
domain as a porous medium[2] The fixed-grid
combined with the porous medium method is
usually referred to as the enthalpy—porosity



method.

To simulate the phase change process efficiently,
this paper proposes a simple numerical algorithm
based on the prediction-correction of the tempe-
rature and the liquid fraction of the cells under-

going phase change.

1. MATHEMATICAL MODELS

The flow is assumed to be two-dimensional,
laminar, and incompressible. The physical proper-
ties of the material are constant in each phase.
The density difference between solid and liquid
phases is negligible except when utilizing the
Boussinesq approximation.

The enthalpy formulation defines the liquid mass
fraction f as the ratio of the liquid mass to the
total mass in a given computational cell. If the
saturation enthalpy of solid phase A, and the

melting temperature 7T, are set to the reference

enthalpy and temperature, respectively, the specific
enthalpy will be

h=fL+cT (1)

In this, L is the latent heat. The heat capacity
¢ may vary with the phase. The liquid mass
fraction can be obtained from the enthalpy:

0 i h<0
f={ & iroshsL @
1 # L<k

For the velocity suppression, this study intro-
duces a Darcy-like momentum source term, which

has functional form of[2]

The constant C has a large value to suppress
the velocity as the cell becomes solid and b is a
small number used to prevent the division-by-zero
when a cell is fully located in the solid region,
namely f=0. In this work, C=1x10%g/m’s and
5=10.005 are used.[2]

Hi. NUMERICAL METHODS

The SIMPLE algorithm[3] is employed to deter-
mine the velocity and pressure field. The deferred
correction method[3] is introduced for the interpol-
ation scheme of the convection term. As the lower
- and the higher-order scheme, the upwind differ-
ence scheme and the central difference scheme are
chosen, respectively. The case that both schemes
equally contribute to the convection term is refer-
red as the mixed difference scheme.

The discretized energy eguation in the finite

volume formulation[3] can be expressed as

apr:”Zaﬂanb+SP_A(l)>(fP-f;’) {4

where subscripts 'P’ and ‘nb’ refer to the value of
present and neighboring cell, respectively. Super-
script ‘*' denotes the value at previous time step.

With the temperature field obtained at the n-th
iteration step, the enthalpy and the liquid fraction
can be calculated from Eqgs (1) and (2), respec-
tively. This procedure, which is the main idea of
the enthalpy method, enables the energy contained
in the cell to redistribute so that the excessive(or
deficient) energy can be stored intotor retneved
from) latent heat rather than spurious sensible
heat.
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To improve the computational procedure, con-
sider the phase changing cells. If we assume the
present cell ‘P’ is undergoing phase change. the
temperature is given by

. ga’(lz‘:l)T’(I;’t)GS;n-fl’l ~
Tp = a(”*l) (3)

The generalized source GSp can be easily
obtained from Eq(4). The influence coefficients and
the generalized source are calculated with the
updated mass fraction £ Y. Although the tempe-
ratures of neighboring cells 7,, are obtained at
the previous iteration step, the new temperature
TP based on the updated mass fraction will
be a more accurate estimation. This temperature
can be used to update the mass fraction with the
enthalpy expression. This predictor-corrector pro-
cedure will he applied iteratively only to phase
changing cells consisting in the phase change
front. The whole set of the governing equations do
not need to be solved duning this procedure. The
proposed simple but effective algorithm always
ensures the energv conservation at the phase
changing cell. Furthermore, this can be readily
adaptable to anv numerical scheme designed for

computational efficiency.

IV. NUMERICAL RESULTS

The convection-dominated melting of a pure
gallium{4] is simulated with the proposed algo-
rithm. The present numerical results are compared
with the transformed-grid results[2] and the finite
element solutions.[5] The experimental configu-

ration is sketched in Figure 1.
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Iig. 1. Schematics of phase change problems in a
rectangular cavity

The predicted phase change fronts are shown
with the results from the experiment and other
numenical models in Figure 2. The convection term
is interpolated based on the mixed difference
scheme. When analvzing solid-hquid interfaces at 6
and 10 min, the finite element and the transformed
-grid solutions seem to give better prediction than
the present calculation. However, even though the
hot wall temperature is assumed to reach the
desired temperature upon starting the experiment,
to raise the temperature impulsively to the desired
one is very difficult in practice. The actual amount
of energy transferred to the gallium through the
hot wall should be less than that imposed in the

idealized calculation. so that the retardation of the
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front evolution in the experiment may be likely. At

19 min when the effect of delayed heat-up at the
hot wall is less significant, the interfaces obtained
with the fixed~gnd correspond better than those
with the transformed-gnd do.
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Fig. 2. Phase change fronts during the gallium
melting

In order to show the flow structure in the melt,
the streamlines are plotted in Figure 3. An inter-
esting point to note is that the flow structures
obtained in previous studies[1] show only a single
cell in the melt region. With the transformed-grid,
Viswanath and Jaluria[2] observed a secondary
recirculation cell in the lower part of the melt
region. They used the power scheme for the inter-
polation of the convection term. In the present
study, the mixed difference scheme shows the
obvious distortion of the streamlines in the lower
melt region. On the other hand, although not
shown here, the streamlines by the upwind differ-
ence and the power schemes fail to predict the
minor flow motion in the melt.

The solidification of tin is also simulated with
the proposed model. The experimental and the
transformed-grid results by Wolff and Viskantal6)
shown in Figure 1(b) are cited for the comparison.

Figure 4 shows the temperature distribution in
the liguid during the solidification of tin. The

present fixed-grid solutions are very similar to the
transformed-gnd results. Considering some of the
scatter in the measured temperatures as noted by
Wolff and Viskanta.[6] The results generated from
numerical methods are in fairly good agreement
with the experimental data.

Fig. 3. Streamlines for gallium melting at 19min
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Fig. 4. Temperature profile in the melt during the
solidification of tin at 0.529 hr

V. CONCLUSIONS

The convection-dominated melting and solidifica-

tion in a rectangular cavity is investigated numer-

251



I YRET

. 0| Ab M

[ |

ically on the basis of the fixed-grid formulation.
The phase change process and the velocity sup-
pression is modeled by the enthalpv-porosity me-
thod.

The gallium melting and the tin sohdification are
stmulated with the present model and the resuilts
are comparable with the experimental data in the
literature. The comparison with the transformed-
grid calculation shows that the present model! pro-
duces similar or better predictions of the macro-
scopic feature of the melting like the movement of

the phase change tront.
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