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Phase Shift Analysis of 1>!'C 4 p Elastic Scattering
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Differential cross sections of elastic scattering for °C + p system at Eiun/A = 45.3 MeV /nucleon
and !'C + p system at Ei.n/A = 40.6 MeV/nucleon have been analyzed using the eikonal approxi-
mation and first-order eikonal model, respectively. The calculated results lead to a good agreement
with the experimental data. A Fuller decomposition of the scattering amplitudes have shown that
the elastic cross sections are dominated by the far-side amplitude. The strong real potential is
required to describe the large angle behavior of the cross section which is dominated by the far-side

component of the scattering amplitude.
1. INTRODUCTION

The most commonly studied process (experimentally
and theoretically) in the scattering problem is that of
elastic scattering. Heavy-ions elastic scattering has been
used as the starting point to understand more compli-
cated scattering mechanism. The outcome of elastic scat-
tering data analysis generally is required to begin studies
of other reaction process. There have been much the-
oretical efforts [1-8] to analyze the heavy ion elastic
scattering. The heavy-ion elastic scattering is generally
dominated by the strong absorption, which the implica-
tion that the data are only sensitive to the surface of
the interaction region. Therefore, the optical potential
required to describe the measurements is not uniquely
determined. However, the angular distributions of light
heavy-ions elastic scattering have shown the presence of
strong refractive effects which are interpreted as the dom-
inance of contributions from the far side of the scattering
center. The refractive phenomena seen in the elastic scat-
tering angular distributions of light heavy-ions provide a
unique source of information on the heavy-ion interaction
potentials at small internuclear distance.

Over the last decades, eikonal model is useful and con-
venient tools to describe the heavy-ion elastic scatter-
ing. A number of studies [9-12] have been made to
describe elastic scattering processes between heavy-ions
within the framework of the eikonal model. The phase
shifts in the eikonal model are derived from the inte-
gral equation by further approximation the WKB results.
The use of the distance of closest approach as an effec-
tive impact parameter in the eikonal formula provides a
simple and efficient way to study heavy-ion scattering at
relatively low energies ({12]. In the early work of Cha
and Kim {13}, we have presented the first- and second-
order corrections to the zeroth-order eikonal phase shifts
for heavy-ion elastic scatterings based on Coulomb tra-
jectories of colliding nuclei and it has been applied sat-
isfactorily to the 50 + “°Ca and 90 + ®Zr systems
at E,=1503 MeV. The elastic scatterings of 0 + %0
system at Ej,, = 350 and 480 MeV have been analyzed
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within the framework of second-order Coulomb-modified
eikonal model using the tangential velocity at the dis-
tance of closest approach [14].

Since the advent of secondary radioactive beams far
from stability, many nuclear physicists have paid atten-
tion to studies of exotic nuclei {15-21]. The neutron
rich nuclei with large neutron-to-proton ratio, such as
68He [17], 'Li [15, 16] and 820220 (18, 21| has
been studied extensively. Recently, to probe the ground
state and transition densities, the neutron-deficient nu-
clei elastic and inelastic scattering on a proton target
were measured in inverse kinematics for the unstable 1°C
and !1C nuclei [20] at 45.3 and 40.6 MeV /nucleon, re-
spectively. These neutron-deficient nuclei elastic cross
section data are compared to the optical model calcu-
lations performed within the framework of microscopic
nucleus-nucleon Jeukenne-Lejeune-Mahaux potential ap-
proach, and direct structure information (matter rms
radii, neutron moment for °C) was extracted.

It is interesting to apply the eikonal model analysis for
the neutron-deficient nuclei elastic scattering on proton.
In this paper, we will calculate elastic scattering cross sec-
tions for 1°C + p system at Ei,p/A = 45.3 MeV/nucleon
and !C + p system at Ej,,/A = 40.6 MeV/nucleon,
respectively, by using the phase shift analysis based on
eikonal model, and compare theoretical results with the
experimental data. In the following section, the relevant
details of eikonal model are given. In section III, we
present the results and conclusions of our analysis.

II. THEORY

The elastic differential scattering cross section is given
by the following equation:

%~ fOP”. 1)

Ignoring the spin-orbit effects, we write the elastic scat-
tering amplitude f(f) as

£(6) = J(0)+ 5 Y (L+3)exp(2ion)(SY ~1)Pu(cost),
L=0
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where fr(8) is the usual Rutherford scattering amplitude
and g, the Coulomb phase shift. The nuclear S-matrix
elements Si" in this equation can be expressed by the
nuclear phase shift §; as

Sy = e¥oe, 3)

If there is a single turning point in the radial
Schrédinger equation, a first-order WKB expression for
the nuclear elastic phase shifts §, taking into account
the deflection effect due to Coulomb field, can be written
as [10]

6L = /°° kp(r)dr - /00 ke(r) dr, (4)

where r, and 7. are the turning points corresponding to
the local wave numbers k. (r) and k.(r) given by

kL(T) = k[l - (i’l + % " UNEEr))}lﬂy (5)
ko(r) —k[l (27]*’%1‘2)]1/2, ©

where 7 is the Sommerfeld parameter, and Un(r) the
nuclear potential. If we consider the nuclear potential as
a perturbation, the nuclear phase shift including up to
the first-order correction term can be written as

_# [T _rUnir)
Rk [, (r2-r2)1/2
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where 7 = \/r2 + 22, and r. is the Coulomb distance of
closest approach given by

&(re) dr

rc:%{n+[n2+L(L+l)}m}. (8)

The first term in Eq.(7) is the ordinary Coulomb-
modified eikonal phase shift, while the second term is
the first-order corrections correspond to noneikonal ef-
fects. The nuclear phase shift 6, (r.) in Eq.(7) can be
rewritten as following

8r(re)

__* AN [T e
2a4k3(1+’°drc)/0 UZ(r) dz. (9)

The first-order eikonal correction term of the phase shift,
81(re) in Eq.(9), can further be expressed as following

2 o
st = i [ [vA 4 runin 220 4

(10)

The closed expression of the effective phase shift function
including up to the first-order correction term may be
written as

bu(re) = —ﬁfo Uet(r) dz (11)

where Ueq(r) is the effective optical potential given by

Un(r) {1 + Ez% [UN(r) 47 UN(’)J }
(12)

We can see that the phase shift calculation including non-
eikonal corrections up to the first-order is equivalent to a
zeroth-order calculation with effective potential Ueg(r).
The nuclear potential Un(r) in this work will be taken
as the usual optical Woods-Saxon form given by

Vo , Wo
14 c0-Rjay, ‘T etr-Relaw'

Uesi(r) =

Un(r)=- (13)
with Ry =7yu X A,l,/a.

The removal of probability current in elastic scattering
is related to the fact that processes other than elastic ones
may occur in a nuclear collision, which absorb some of
this current. A quantitative measure for the absorption
is provided by the reaction or absorption cross section.
The total reaction cross section is defined as

e o
or =17 ) _(1-ISFP). (14)
L=0

This relationship established a link between the scatter-
ing and the reaction cross sections.

III. RESULTS AND CONCLUSIONS

TABLE [: Parameters of the fitted Woods-Saxon potential
by using the eikonal approximation (Cal.1} and first-order
eikonal model (Cal.2) for the elastic scatterings of '°C + p
system at Ej,, /A= 45.3 MeV/nucleon.

Vo re @ Wo oty aw or XN

(MeV) (fm) (fm) (MeV) (fm) (fm) (mb)
Cal.l 31.8 145 049 9.8 1.52 0.27 262 4.90
Cal.2 415 129 051 208 1.13 032 268 4.23

We have applied the eikonal model to calculate the
elastic differential cross sections for 91'C 4+ p at
Eiab/A=45.3 and 40.6 MeV /nucleon, respectively. Ta-
ble I and II show the parameters of the fitted Woods-
Saxon potential. The six potential parameters are ad-
justed so as to minimize the x2/N given by

O Sy =

czp
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TABLE II: Parameters of the fitted Woods-Saxon potential
by using the eikonal approximation (Cal.1) and first-order
eikonal model (Cal.2) for the elastic scatterings of 'C + p
system at Enp/A= 40.6 MeV/nucleon.

Vo tv 6. Wo ru 6w ar X/N
(MeV) (fm) (fm) (MeV) (fm) (fm) (mb)
Cal.l 329 150 034 88 144 041 272 557

Cal2 484 125 048 172 108 037 272 3.59

In Eq.(15),0%,,(0%,) and Act,, are the experimen-
tal (calculated) cross sections and uncertainties, respec-
tively, and N is the number of data used in the fitting.
The calculated results of the differential cross sections
for the elastic scattering of '°C + p system at Ey.,/A=
45.3 MeV /nucleon and *C + p system at Ejap/A= 40.6
MeV /nucleon, respectively, are presented in figures 1
and 2 together with the observed data [20]. In these
figures, the dashed curves are the best calculated cross
sections using the eikonal approximation, while the solid
curves are those obtained when first-order eikonal model
are used. Clearly, there are excellent agreements be-
tween the calculated results and the experimental data
!20]. The reasonable x2/N values are obtained in the
9C + p at Ejp/A=45.3 MeV/nucleon and ''C + p at
Eisb/A=40.6 MeV/nucleon, respectively, as listed in Ta-
ble 1and IL If we judge from x?/N point of view, the
calculated results of first-order eikonal model give some
better agreement with the observed data compared to one
of eikonal approximation, as shown in tables Iand II.
The values of x2/N decrease explicitly in the calculated
results using the first-order eikonal model compared to
the ones with eikonal approximation. In table Iand II,
one can find that two calculations give the nearly same
reaction cross sections due to using best fitted potential
parameters not using the same potential parameters, al-
though there is small difference in °C + p system at
Eiab/A=45.3 MeV /nucleon.

More insight into the structure of the angular distribu-
tion can be provided by the representation of the elastic
scattering amplitude in terms of the near-side and far-
side components. The near-side amplitude represents a
contribution from the wave deflected in the direction of
0 on the near-side of the scattering center and the far-
side amplitude represents a contribution from the wave
travelling from in opposite side of the scattering center
to the same angle . The near- and the far-side decom-
positions of the scattering amplitudes due to the Fuller's
formalism [22] are obtained from

(8 = fn(6) + fr(0), (16)
where

R0 = fry.,(0) + 5% Z(2L + 1)exp(2ioL)
L=o

x(1 - S)Q (cos 9). (17

da / dQ (mbisr)
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FIG. 1: Elastic scattering angular distributions for ¢ 4+
p system at Enp/A= 45.3 MeV/nucleon. The solid circles
denote the observed data taken from Jouanne et al  [20].
The solid curves are the calculated results using the first-order
eikonal model, while the dashed curve is the result from the
eikonal approximation.
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FIG. 2: Elastic scattering angular distributions for 'C +
p system at Eia/A= 40.6 MeV/nucleon. The solid circles
denote the observed data taken from Jouanne et ol  {20].
The solid curves are the calculated resuits using the first-order
eikonal model, while the dashed curve is the result from the
eikonal approximation.

Here, fr, and fgr, are the near- and far-side Rutherford
amplitudes, respectively, and Q(E') are linear combina-
tions of Legendre functions of the first and the second
kind according to

Qf)(cos 8= % [PL(cos o+ i%QL(COS 0)]~ (18)

The contributions of the near- and far-side components to
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FIG. 3: Differential cross section (solid curve), near-side con-
tribution (dotted curve), and far-side contribution (dashed
curve) following the Fuller’s formalism [22] from the first-
order eikonal model for °C + p system at Ei.,/A= 45.3
MeV /nucleon.

the elastic scattering cross sections using the first-order
eikonal model are shown in Fig. 3 (1°C + p system) and
Fig. 4 (11C + p system) along with the total differential
cross sections. The total differential cross section is not
just a sum of the near- and far-side cross sections but
contains the very small interference between the near-
and far-side amplitudes as shown in Fig. 3 and Fig. 4
. In both cases, the near-side amplitude are very small
compared to the far-side one over the whole angle. Due
to the smallness of the near-side components, we can find
that angular distributions for 1°C + p system at Ej,;,/A=
45.3 MeV /nucleon and 'C + p system at Ej,,/A= 40.6
MeV /nucleon, respectively, show very weak oscillations.

In order to represent the partial wave contributions
to the cross sections in terms of orbital angular momen-
tum L, we plot in Fig. 5 the real and imaginary parts of
the term § = (L + 1)e?*¢(S} - 1). The first-order
eikonal model results of 1°C + p system at ELw/A=
45.3 MeV /nucleon and }'C + p system at E},,/A= 40.6
MeV /nucleon are shown in the left and right panel, re-
spectively. In this figure, we can see that two parts of
S play an only important role in the small angular mo-
mentum zone less than L = 8. For both system, the
imaginary part (Sy.) dominates compared to real one
(SRe)'

The real and imaginary parts of the optical potential
for eikonal approximation and first-order eikonal model
calculations, respectively, are displayed in Fig. 6. The
results of 1°C + p system at Ey,,/A= 45.3 MeV /nucleon
are shown in left panel, and 'C + p system at E),,/A=
40.6 MeV/nucleon presented in the right panel, respec-
tively. In both calculations, the strongly real and weakly
imaginary optical potentials are found to be essential to
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FIG. 4: Differential cross section (solid curve), near-side con-
tribution (dotted curve), and far-side contribution (dashed
curve) following the Fuller’s formalism [22] from the first-
order eikonal model for ''C + p system at E,,/A= 40.6
MeV /nucleon.
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FIG. 5: Real (Sg) and imaginary (Sim) parts of $ = (L +
%)ezin (SY —1) using the first-order eikonal model for (a) *°C
+ p system at Ej,n/A= 45.3 MeV/nucleon and (b) !C + p
system at Ej,,/A= 40.6 MeV /nucleon plotted versus orbital
angular momentum L.

describe the experimental data. In the small r region,
the imaginary potential is small compared with the real
potential. This implies deep elastic interpenetration of
the target and projectile. The deep real potential deflect
internal trajectories to large negative angles, therefore,
is required to describe the large angle behavior of cross
sections corresponding to far-side scattering. As a result,
the cross section becomes sensitive to the value of the real
potential in the central region.

In conclusion, we have analyzed the elastic scatter-
ing of 1°C + p system at Ej,,/A= 45.3 MeV/nucleon
and ''C + p system at Ej,,/A= 40.6 MeV/nucleon us-
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FIG. 6: Real and imaginary potentials for (la) 19C 4+ p system
at Ej.b/A= 45.3 MeV/nucleon and (b) ''C + p system at
Elan/A= 40.6 MeV/nucleon. The solid and dashed curves
represent the results from the first-order eikonal model and
eikonal approximation, respectively.

ing the first-order eikonal model and eikonal approxi-
mation, respectively. The predicted results have been
found to reproduce satisfactorily the differential cross
sections, and a comparison with experimental data has
given excellent agreement over the whole angular range.
We can find that the agreements between the first-order
eikonal model results and experimental data are some
better compared to the eikonal approximation result. A
Fuller decomposition of the scattering amplitudes into
the near- and far-side components have shown that the
cross sections are dominated by the far-side amplitude.
The strongly real and weakly imaginary optical poten-
tials were required to reproduce the ®1'C + p elastic
scattering data and these potential features make it pos-
sible to interpenetrate each other between the projectile
and target. As a result, the cross section becomes sensi-
tive to the value of the real potential at small r value. We
have seen that the deep real potential is essential to de-
scribe the large angle behavior of the cross section which
is dominated by the far-side component of the scattering
amplitude.
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