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Linear preservers of roots of matrix
polynomials

Seok-Zun Song*
Department of Mathematics, Cheju National University, Jeju 690-756, Korea

Abstract. In this paper we classify linear operators on matrices with coef-
ficients from fields or semirings that preserve different relations that can be
defined by multivariable matrix polynomials.

1 Introduction

In the last decades much attention has been paid to Linear Preserver Prob-
lems over semirings. A lot of results have their parallel solutions for matrices
over semirings. Among the investigated relations there were also several
polynomial conditions, see [2, 4, 5, 6, 7).

Let Z, be the set of nonnegative integers and M,(Z,) denote the set of
n X n matrices with coefficients from Z,.

Many authors have studied the problem of determining the linear maps of
nxn matrix algebra M, (F) over a field F that leave certain matrix relations,
subsets, or properties invariant. Among the relations that were considered
the central role was played by relations that can be determined in terms of
matrix polynomials, for example, commutativity, nilpotence, idempotence,
etc., see [1, 3, 8, 9, 10, 11, 12].

The aim of the present paper is to consider linear preservers of roots of
matrix polynomials in a systematic way.
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2 Definitions and Notations

By the Amitsur-Levitsky Theorem n x n matrix algebras over fields satisfy
standard polynomial identities of degree 2n and not polynomial identities
of lower degrees. Moreover, the set of noncommutative polynomials that are
identities in matrix algebra is of a very special type. Therefore, together with
each noncommutative polynomial equation evaluated in a matrix algebra we
can consider the set of matrices that satisfy this polynomial equation. The
structure of this variety is unknown. The usual way to generate elements in
such variety is to find a concrete n-tuple of matrices in this variety and act on
it by various linear transformations that preserves roots of polynomial under
consideration. Thus the problem of classification of linear transformations
preserving roots of matrix polynomials arises.

Below we start with some polynomials that arise naturally in the study
of associative algebras and their matrix representations.

Commutative algebras: Let us denote by [z, y] the additive commutator,
ie., [z,y] = zy — yz. The class of commutative algebras is defined by the
identity [z,y] = 0. In the other words commutativity condition on matrices
can be expressed in a following way: Consider the non-commutative matrix
polynomial P, = [r,y] = zy — yz. Thus the set of pairs of commuting
matrices is the set of its matrix roots, namely the set

V(P) ={(X,Y) € Mp(Z,)}}XY =Y X}.
The infinite dimensional exterior Grassman algebra is
(1,eq,€9,... |ef =0, e;e; = —eje;).

It is easy to show that the center of the Grassman algebra is the set of
words on ey, ..., €y, ... with even length which satisfy the triple commutator
polynomial identity, i.e., Ps(z,y,2) = 0, where P3(z,y,2) = [[z,y],2] =
TYz + 2yT — yrz — 22y. Let
V(B)={(X,Y,2) € Mn(Z))P|XYZ+ZYX=YXZ+ZXY}.
We will also consider a long commutator of arbitrary length:

Pu(zy,. . zm) =[[. . [[z1, 22}, 23), - - ], Zm)
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and denote

V(P‘l) = {(Xa Y, Z, U) € (Mn(z+))4|
XYZU+ZYXU+UZXY +UYXZ =
ZXYU+YXZU+UXYZ+UZYX}.

More generally, let f(z1,...,Zm) = Pu(Z1,...,%m) = [.. . [[21, 22), 23}, . . - Tpn)
be a polynmial with real coefficients. Denote by f,(zy,...,zy,) the polyno-
mial which consists of all terms of f that have positive coeflicients, and by
f-(z1,...,Zm) the polynomial which consists of all terms of f that have
negative coefficients. We denote by V(P,,) the set V(Py,) =

{(X1 Xy, -+, Xin) € (Mp(Z3))"If+ (X1 X2y o+, X)) = fo (X1 X2, -+, Xm) }-

A 2 x 2 upper triangular matrix algebra satisfies the polynomial identity
which is the product of two commutators: Py 2(z1, 22, 23, 24) = [21, T2)[Z3, 4).
Denote the corresponding variety in (My(Z4))* by

V(Py2) = {(X,Y,2,U) € (Mp(Z,)|XYZU+YXUZ = XYUZ+Y X ZU}.

Polynomial identities for k x k upper triangular matrix algebras have the
form

P2,k($1, cre ;$2k) = [11, 332] T [z2k—1,2k]'

In the case of antinegative semiring for the simplicity of notations we write
[X,Y] = 0 for matrices X,Y satisfying XY =Y X, [[X, Y], Z] = 0 for triples
(X,Y,2) € V(B), [[X,Y],Z],U] = 0 for 4-tuples (X,Y,Z,U) € V(F),
and [X,Y][Z,U] = 0 for 4-tuples of matrices (X,Y, Z,U) € V(P,3). More
generally, we define the set V(P2x) to be the set of 2k-tuples of matrices
Xl, RN ,sz satisfying f+(X1, ey sz) = f_(XI, v ,ng).

3 Linear Preservers of V(P,,) for m > 4.

In what follows we obtain a characterization of bijective linear transforma-
tions of matrices over semirings that leave the sets V(P,,) invariant for m > 3.

Lemma 3.1 IfT : M, (Z,) - Mu(Z,) is a bijective linear transformation,
then there erists a permutation o of the set {(i,7)]1 <i < m,1 < j < n}
such that T(E; ;) = E,; 5 for all (i, j).
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Proof. By the fact that T is surjective, there is some X such that , T(X) =
FE; ; for each pair (3, j).
We say that A > B or B < A if and only if b; ; # 0 implies that a; ; # 0.
If B,, < X, let Y = (y;;) be the matrix such that y;; = z;; if (4,7) #
(r,s), and gy, = 0. Then

T(2r5Ery) < T(@yyErs) + T(Y) = T(2sEry + Y) = T(X) = E;

since Z, is antinegative and T is additive. Hence, T(z,,E,,) < E; ;. Thus
T(z,sErs) = aE; ; for a certain o € Z,.

Let us check that T induces a permutation on the set of cells. Assume
to the contrary that the inverse images of the cells under the action of T do
not partition the set of cells. Then there exists (i, j) such that

T(Ey;) = a1By 5y + - + By,

Since the preimage of a certain multiple of a cell is a cell we have that there
exists corresponding indices s, ..., S, 71, ..., Tt and constants b, ..., by, and
ci,...,Ck such that

T(blEsl,rl) = ClEix,jl’ ey T(bkEa;,,r;,) = CkE,‘

k:Jk
Thus one has that
T(biaicy- - ckEs, 7,) = ar1c102 -+ - ek By o,

T(b2020103 v Ck:Esz,rg) = QoCy: CkEig,jzv

T(bagey - ck-1Es, ) = axcy -+ - By,
Hence,
T(61 v CkEi,j) = QaCy - C]‘;E’,‘l,j1 +---+ agCy * - 'ClcEi;,,jk =
= T(b1a162 T CkEsl,rl) R o T(bkakcl v Ck—lEa;,,rk)

By linearity and bijectivity it follows that

cr-cceByy =biaicy ekl g 4+ braker - ok By 1y
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Thus since Z, is antinegative and without root divisors, one has that for any
l=1,...,keither by = 0or s, =7 and r;, = j. Let us assume that there exists
more than one index [ such that b # 0. After reindexing we may assume
that b, # 0. Thus r; = 4,8, = j and

bi(arEy j + -+ akEiyj) = T(b B j) = a1 By,

It follows that ay = --- = a; = 0.

Therefore, the image of a cell is a cell, and preimages of cells partition the
set of cells. By bijectivity and the fact that the unique invertible element in
Z, is 1, one has that for any 4, j, 1 < 4,j < n, there exists some k = k(i),l =
I(§) such that T'(E; ;) = Ex,.

[ |

Recall that V(P,) =

{(XlX?a T Xm) € (Mﬂ(z+))m‘f+(X1X21 Yy Xm) = f—(X1X27 Tty Xm)}

In what follows we obtain a characterization of bijective linear transfor-
mations of matrices over semirings that leave the set V(P,,) invariant for all
m > 4.

In the case of antinegative semirings, for simplicity of notation, we write
[X,Y] = 0 for matrices X,Y satisfying XY = Y X and

[' t [[X11X2]1X3]: . 'Xm] = O
for m—tuples (XlaX2) o Xm) € V(Pm)

Theorem 3.2 Let T : My(Z,) = M,(Z,) be a bijective linear transfor-
mation, n > 3. The transformation T preserves the set V(Py,) if and only if
there erists a permutation matriz P € My(Z,) such that T(X) = PXP!
for all X € Mn(2}) or T(X) = PX'P7! for all X € M,(Z,).

Proof. It is easily seen that if T(X) = PXP~! for all X € M,(Z,) or
T(X)=PX'P~! for all X € M,(Z,) then T preserves V(P,,).

Suppose that T preserves V(P,,). Since T is bijective, by Lemma 3.1, we
have that there is a permutation o such that T(E; ;) = E, j)-

Let us check that T maps lines to lines. Assume that there are i, 7,
1 <i# j < n, such that T-'(E;;),T~!(E; ;) do not lie in one row and one
column. Let

Ei,i = T(Er,a)’ Ei,j = T(Ep,q)’ Ej,j = T(Eu,v)a
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1<p#r q#s,u,v<n. Thus
B Epg=0=FE, E,,
and, hence,
(Er,ss Ep,q’ Eu,v» Eu,vy Yy Eu,v) € V(Pm)a

since each term of both

f+(Er,ss Ep,qa Eu,va Eu,va Ty Eu,v) and f— (Er,sy Ep,q, Eu,va Eu,v, T Eu v)

y

contain either E, ,E,, or E,E, ,. It is easy to see that

(T(E,‘s), T(Ep,q)’ T(Eu,v)’ T(Eu,v)’ vy T(By)) =

(Eij, Eij,Ej;,Ejj,- -, Ejj) ¢ V(Pn)

since only one term of f, (E;;, Eyj, E;j, E;j, -+, E;;) is nonzero,
EiiEijE;;Es;- - Ejj = Ei;

and all terms of f_(Ei;, Ey;, E;j, Ej;,- -, E;;) are zero.

This contradicts the assumption that T preserves the set V(P,;). Thus
for any 1, j, the preimages of E;; and E; ; lie in one row or one column.

Similar arguments show that T7!(E} ;) lies in 7** row or s** column for
each k£, 1 < k < n. Thus, since T permutes the cells, from the coincidence of
cardinalities it follows that r** row and s** column are mapped into it* row
and ** column.

Let us now show that 7 = s. Suppose to the contrary that 7 # s. Then

(ET,S) Ep,s, Eua,vaa A 3 ) € V(Pm)

) Um,¥Um

for all p # s and for all u;,v; since E,, commutes with E,s. On the other
hand, for T(E, ;) = E;; choose u;, v; such that (u;,v;) = (u3,v3),5 =4, --m
and T(Eus,va) = Ej,j- Then

(Eii, Bij, Ejjy -+, Ejj) € V(Pn)

for j # 1. This contradicts the assumption that T preserves V(P,,) since
there exists u3, v3 such that T(E,, ,,) = E; ;.
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Thus one has that for any s, s = 1,...,n T(E,,) = Ey;, st* row and
column are mapped to i** row and column.

For any p # s,q # s one has that [Ep,, Eg,] = 0, i.e., (Eps, Eqs, Eup) €
V(P;) foralll <p#s,g#s<nandforalll <uv<n Let us assume
that T(E,,) and T(E,,) do not lie in one row or one column. Without
loss of generality one may assume that T(Ep,) = Ei, T(E,s) = Ey; for
certain k,I, 1 < k,I < n. Note that ¢ # k,! since s # p,q. Let us denote
T(Eug,m) = Eag,bg1 t=3,---,m. Thus (E,"k, El,,', Eas,b3a cery Eam,bm) € V(Pm)
forall 1 < ay, b, < n,t=3,:--+,m, since (E,,,,,Eq',,Eua,,,a,---,Eum,,,m) €
V(P,). That is ,

f+ = EixEiiEasps - E

Gm

b + Eagps BliBikFagps " Eampm + -

= Eas,bsEi,kE[,i Tt Eavn'bm + rer = f—.

Let us consider the case that b3 = [, ag = k, and b = ai1 = by for £t =
4,---,m but ag # i,k, by # l,a3. This is possible since n > 3. Thus left-
hand side, f., of the last equality is nonzero while the right-hand side, f_,
is zero. '

This contradiction shows that the s column is transformed to the it
row or to the it column. Similarly, the s* row is transformed to the i** row
or to the i column.

Thus T maps rows into rows or columns. Since T is bijective on the set
of cells and two rows consist of 2n cells while a row and column consists of
2n — 1 cells, one can conclude that 7' maps all rows to rows and all columns
to columns, or all rows to columns and all columns to rows.

Thus, since the image of each cell is a cell, the transformation T only
permutes rows and columns of any matrix and, possibly, transpose it. This
means that there exist permutation matrices P,Q € Mj(Z,) such that
T(X)=PXQ for all X € Myp(Z,) or T(X) = PXtQ for all X € My(Z,).

We now show that Q = P~1. Since P and @ are permutation matrices
one has that T(E;;) = Erg)a(;) for certain permutations 7,7 € Sn. Let us
assume that 7 # 7. Thus there exists 4, 1 < ¢ < n such that 7(i) # ().
Hence there exists k # i such that 7(i) = n(k). For any [ # 1, j, one has that
[El,ka E,'J'] = 0. Thus

(Eip, Eijy Eapy s Eca) € V(Pr)
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forall 1 <a,b,c,---,d <n. Then
(T(Eix), T(Eij), T(Eap)s -+ T(Eea) =
= (Er@ k), Er(i) (i) Er@)ne),* *» Br(e)n(@) € V(Pm)-
By the choice of 1, k one has that [E-q)x(k), Eriyr(s)] # 0 since
Er ) Er(iyni) = Erat) # En(i) () Er (k)

because [ # i. By bijectivity of 7 and 7 there exists a, 1 < a < n
such that 7(j) = 7(a). Thus for b # j and appropriate c,d one has that
[ [ Br (k) Briynid)s Br@ya))s -+ » Br(e)n(@] # 0, L€,

(Bryn(k)s Briy n(s)) Eria)me)s* * Er(en(a)) € V(Prm)-

This concludes the proof. ]

A special case of the above theorem is:

Corollary 3.3 Let T : My(Z,) = My(Zy) be a bijective linear transfor-
mation, n > 3. Transformation T preserves the set V(Ps) if and only if there
ezists a permutation matriz P € M, (Z,) such that T(X) = PXP™! for all
X € Mu(Z,) or T(X) = PX'P7! for all X € M(Z,).

4 Linear Preservers of the Commutator Prod-
uct

In this section we obtain a characterization of bijective linear transformations
of matrices over Z that leave the set V(P, ) invariant.

Theorem 4.1 Let T : M,(Z.) = Myp(Z) be a bijective linear transfor-
mation. Then T preserves the set V(Py ) if and only if there exists a permu-
tation matriz P € Mp(Z,) such that T(X) = PXP~! for all X € My(Z,)
or T(X) = PX'P7! for all X € M,(Z,).
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Proof. By Lemma 3.1, since T is bijective, we have that there is a permuta-
tion o such that T(E; ;) = E,(;j. As in the previous theorem we will show
that 7-! maps lines to lines.

Suppose that the image under T~! of some line is not a line. Then, there
are 1,7 with 1 < 4,5 < n, such that T-'(E;;) and T~'(E;;) do not lie in
one row or one column. Let E;; = T(E,,) and E;; = T(E,,) where, 1 <
p,q,7,s <n,p#rand q#s. Then, E, E,, =0 = E, ,E,, while E; E; ; =
Eij # O = E;;E;;. Without loss of generality we may assume that : = 1
and j = 2. Now, let By, = [g J"_g‘_l ] and Byyo = [8 J1,(3-1 ]
forl =1,---,k—1. Let A, = Ep,q, Ay = E,-’,, Ay = T_I(BgH.l), and
Agyg = T_I(Bzz+2)- Here f (A1, Az, -, Ax) = f-(A1, Agy-+, An) = 0
so that (Al, Az, tee, Azk) € V(sz), but f+(T(A1), T(AQ), e ,T(A2k)) =
f+(E11, B2, B3, By, -+, By) =

|

where a # 0, in fact a = (n — 2)¥2. But, f_(T(A1),T(4s), -+, T(Ax%)) =
f-(Ey,, E12,B;, By, -+, Ba) = O since each tern has a factor that is either
Ey2F) 1 or BogioBagyy for some I, each of which is O. Thus,

(T(A1),T(A2),- -+, T(Azx)) & V(Poy),

a contradiction. Thus the inverse image of a line is a line, and thus, since T
is bijective, the image of any line under 7' is also a line.

Since T is bijective we must have that either T(X) = QXP for all X €
Mu(Z4) or T(X) = QX*P for all X € M,(Z,), for some permutation
matrices P and Q. Since every transformation of the form T(X) = PX P!
or T(X) = PX*P~! preserves V(P,x), we may assume that T(X) = QX We
will now show that Q) = I.

Suppose, without loss of generality, that T maps row 2 to row 1. Let
0 0 0 0

o O
oy e
(TR~
oL e

0

X={001 -1 thenYzT(X)z[gg-%:::é}. Now,
00 6 o G

(E2,1»XaE2,1 X E21,X)€V(P2,k) but

(T(E21), T(X), T(E2), T(X), -+, T(E21), T(X)) ¢ V(Pa),
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which contradicts that T preserves V(P ). Thus @ = I. n

A special case of the above is:

Corollary 4.2 Let T : My(Zy) > My(Z4) be a bijective linear trans-
formation, n > 4. Then T preserves the set V(P,3) if and only if there
exists a permutation matriz P € M,(Z,) such that T(X) = PXP™! for all
X eMu(Zy) or T(X)=PX'P! for all X € Myn(Z,).
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