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CLASSIFICATION OF CYLINDRICAL
RULED SURFACES SATISFYING AH = AH
IN A 3-DIMENSIONAL MINKOWSKI SPACE

SEOUNG DAL JUNG AND JIN SUK PAK

1. Introduction

The study of surfaces in a Euclidean space whose Gauss map G
satisfies the condition : AG = AG (x) for some matrix A was studied
by C. Baikoussis, D. E. Blair, B. Y. Chen, F. Dillen, L. Verstraelen ([1],

(2], [7]) and so on. Also, S. M. Choi ([6]) extended this problem to the
Minkowski space and obtained the following theorem :

THEOREM A. The only space-like or time-like ruled surfaces in R}
whose Gauss map G : M — M?(¢) satisfies the condition (*) are locally
the following spaces ;

(1) The Minkowski plane R2, the Lorentz hyperbolic cylinder S IxR
and the Lorentz circular cylinder R! x S ife = 1, i.e.,, M?(1) := S}(1),

(2) the Euclidean plane R* and the hyperbolic cylinder H' x R if
e=—1, ie, M*(-1):= H}(-1).

Also, in 1994, B. Y. Chen ([5]) studied the submanifolds of Euclidean
spaces satisfying AH = AH (xx), where H is the mean curvature
vector. This condition (*#) is a generalization of the condition (*). In
fact, the examples appeared in Theorem A satisfy (*x).

In this paper, we extend Theorem A under the condition (**) and
prove the following theorem :
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THEOREM. The only space-like or time-like cylindrical ruled surfaces
in R? whose mean curvature vector H satisfies the condition (**) are

(1) and (2) in Theorem A.

Throughout this paper, we assume that all objects are smooth and
all surfaces are connected, unless otherwise mentioned.

2. Preliminaries

Let R} be the 3-dimensional Minkowski spaces with the standard
metric given by

(2.1) g = —dz? + dz? + dz2,

where (z9,21,z2) is a rectangular system of R:;.

Let I and J be open intervals containing 0 in R. Let a = a(u) be a
curve on J into R} and A = B(u) a vector field along a orthogonal to
a. A ruled surface M in R3 is defined as a semi-Riemannian surface
swept out by the vector field 4 along the curve a. Then M always has
a parametrization

(2.2) | z(u,v) = a(u)+vB(u), ueJ, wvel,

where we call a a base curve and § a director curve.

In particular, if 3 is constant, then it is said to be cylindrical, and if
it 1s not so, then the surface is said to be non-cylindrical.

The natural basis {z,,z,} along the coordinate curves are given by

I, = d.r(—a%) =a +vh, z,= dz(aa;)—) = f.

Accordingly it following that

g(zu,74) = g(a',a’) + 2vg(a’, B') + v2g(4", B'),
(23) g(IuaIv) = 01
9(zv,24) = g(B, B).
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Classification of Cylindrical Ruled Surfaces Satisfying AH=AH in a 3-Dimensional Minkowski Space

Since M is a semi-Riemannian surface, it suffices to consider the cases
that o is a space-like or time-like curve and f is a unit space-like or
time-like vector field. The ruled surface M is said to be of type I or
type II, according as the base curve a is space-like or time-like. First,
we devide the ruled surface of type I into three types. In the case that
B is space-like, it is said to be type Ig_ or I, according as (' is null
or non-null. Since we have g(8,8') = 0, when 8 is time-like, §’ is to
be space-like. Hence we call this type as type I_. On the other hand,
for the ruled surface of type II, it is also said to be of type II(_)+ or. I,
according as A’ is null or #' is non-null.

Notice that in case of type II the director curve 8 always is space-
like. Then the ruled surface of type I} or IS (resp. I_,II; or IIﬂ_) 1s
space-like (resp. time-like).

Denoting (g'/) (resp. ®) the inverse matrix (resp. the determinant)
of the matrix (g;). Then the Laplacian A on M is given by

5}

1 2 i
(2:4) A= 2 paVIBle 500,

where u; = u and u; = v. Let N be a unit normal vector to M. It
is defined by f~!z, x z,, where f is the norm of the vector z, x z,.
Then the mean curvature vector H is defined by

1Gl+ En —2Fm
(2.5) H=soDr—mN,

where E = g(24,24), F = 9(24,24),G = g(24,24),l = g¢(N,Tpu),m =
g(N, ‘Tuv) and n = g(N,x,,,,).

3. Cylindrical ruled surfaces
Let M be a cylindrical ruled surface of type I, Il parametrized by
z = o(u,v) = au) + vh,

where /3 is a unit space-like constant vector along the curve o orthog-
onal to it. That is, it satisfies g(a’,8) = 0, ¢(8,8) = 1. Acting
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a Lorentz transformation, we may assume that § = (0,0,1) with-
out loss of generality. Then a may be regarded as the plane curve
a(u) = (ag(u),a;(u),0) parametrized by arc-length ;

g(a',a') = —az,z + a'12 = —e.

From (2.5), the mean curvature vector is given by

H = —% ag,ay,0),
because of z,, orthogonal to z, and z,.

It is the space-like or time-like vector to M, according as e = 1 or
—1. Since the induced semi-Riemannian metric ¢ is given by g;; =
—¢, g12 = 0 and gg2 = 1, the Laplacian of H is given by AH =
-3 af,“, 0‘(14)» 0) from (2.4). Thus, from the condition (**) we have the

following system of differential equations :

(4)

— H "

€y = aynay + appay,

(4) " 7

(3.1) €, = agap + axay,
" "

0 = az1qy + aszaay,

where A = (a;;) is the constant matrix.
To solve this equation, condider that M is of type I, i.e., the plane
curve « is space-like (e = —1). So we get g(a’,a') = —a}® + o}® = 1.
Accordingly we can parametrize as follows :

(3.2) ag = sinh8, a) = coshé,
where § = 6(u). Differentiating (3.2), we obtain

(3.3) ag = 6' cosh 8, al' = 6" cosh 6 + ' sinh 6,
al? = (6" +6") cosh 6 + 36'0" sinh 4,

ay = 6'sinhé, o' = 6" sinh 6 + 6'* cosh ,
al?) = (6" + 6'°)sinh 8 + 36'6" cosh 6.
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Classification of Cylindrical Ruled Surfaces Satisfying AH=AH in a 3-Dimensional Minkowski Space

By (3.1), (3.2) and (3.3), we have

(6" + 6" )cosh 6 + 366" sinh 8 = —a,,6 cosh8 — a;268'sinh 8,
(6" + G'J)Sinh 0 + 36'6" cosh§ = —a,; 8’ coshf — ay26' sinh 8,
which give

(3.4)
8" + 8" = —a,,0 cosh? 6 — 8'(ay; — ag1) cosh #sinh 8 + a;,6' sinh? 8

(3.5)
36'6" = —a,,6 cosh? 8 + 6'(a;; — agz) cosh @sinh 6 + a1 6 sinh? 4.

Case i) 6’ # 0. From (3.5), we have
(3.6) 30" = —ay; cosh? B + (a;; — azz) coshsinh 8 + a5 sinh? 4.
Differentiating (3.6), we get
36" = 6'(ay; — az;)(cosh? 8 + sinh? 8) + 26'(a;; — az1) cosh §sinh 6.

Substituting this equation into (3.4), we get

(3.7)
(ay; — agz)(cosh? @ + sinh? @) + 2(a;2 — az;) cosh@sinh 8 + 36"

= —3{an cosh? 8 — azq sinh? 6 — (a2, — ay2)sinh 8 cosh 8}.
Differentiating (3.7), we have

(3.8)
(5a12 — Taz;) cosh? @ + (7aj2 — 5az1) sinh?® 6
+ 12(aj; — az2) coshfsinh 8 = 0.

From (3.1) and (3.8), we get

(3.9) aj; = aze, a2 =az =az =4z =0,
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because sinh 8 cosh 8, sinh? 8 and cosh? 8 are linearly independent func-
tions of 8 = 0(u).
Combining (3.9) with (3.5), we have

0=:tlu+b,
r

where —;l-; =ay;;=ayp, r>0 beR.
Accordingly we have

ag = trcosh@ 4+ ¢y, c¢o € R,
a; = xrsinh84¢,, c¢; €R.

This representation gives us to
—(00—60)2+(01 —61)2 = —7'2, r > 0.

We denote by H(r,(cg,c;)) the hyperbolic cicle centered at (co,c¢1)
with radius r in the Minkowski plane Rf.

By the above equation the curve a is contained in H!(r,(co,c1))
and hence the ruled surface M is contained in the hyperbolic cylinder
H! x R.

Case ii) ' = 0. Let J; be a set {u € J|6'(u) =0}. We claim that
if Jo is not empty, then Jy is to be J itself. In fact, we suppose that
Jo # J,1.e, J — Jyg # ¢. Then (3.9) is satisfied on J — Jy. Since A is
constant matrix, (3.9) is satisfied on J. So (3.6) leads thst 8" = 0 on
J, i.c., 8" is constant on J. By assumption, there exists ug € Jo and
8'(ug) = 0. Thus &' is zero on J, a contradiction. Hence 4 is constant
on J. Therefore the normal vector N is the time-like constant vector.
This implies that M is contained in R?.

Next we are concerned with the cylindrical ruled surface M of type
I1,, i.e., the plane curve « is time-like (¢ = 1). Then the surface M is
time-like and we get g(a',a') = —1.

Accordingly we can parametrize as follows :

ag = cosh@, o} =sinh,
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Classification of Cylindrical Ruled Surfaces Satisfying aH=AH in a 3-Dimensional Minkowski Space

where § = 6(«). By the similar discussion to that of the above ruled
surface of type I, we can get, under ' # 0,

a; = azz, a2 =az =a3z =az =0,

which yiclds that

1 1
0=+%-u+b, — = a1 = azz, r >0, be R.
T T

Accordingly we have

ag = xrsinhf 4+ ¢y, ¢ € R,
a; = trcoshf+¢;, c; €R.

This representation gives us to
—(ag —co): + (g —c1)2 =72 r>0.

We denote by S}(r,(co,c1)) the pseudo-circle centered at (co,c;) with
radius 7 in the Minkowski plane R3.

By the above equation the curve o is contained in S} (r,(co,¢1)) and
hence the ruled surface M is contained in the Lorentz circular cylinder
S] x R.

On the other hand, if a set {u € J | 8'(u) = 0} is not empty, then 6
is constant on J by the similar discussion to that about the surface of
type ;. So we get that the normal vector N is the space-like constant
vector. It shows that M is contained in R}

Hence we have

THroOREM 3.1. The only cylindrical ruled surfaces of type I (resp.
IL, ) in R} whose the mean curvature vector satisfies the condition (**)
are locally the plane or the hyperbolic cylinder (resp. the Minkowski
plance or the Lorentz circular cylinder).

Now, let M be a cylindrical ruled surface of type I_. Then M is
paramectrized by
z = z(u,v) = a(u) + v8,
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where [ is a unit time-like constant vector along the space-like curve a
orthogonal to it. That is, it satisfies g(a’,§) =0, ¢(5,8) = —1. Act-
ing a Lorentz transformation, we may assume that 3 = (1,0,0) without
loss of generality. Then a is the plane curve a(u) = (0, a;(u), az(u))
parametrized by arclength ;

(3.10) g(a’,a') = o}’ + o’ = 1.

The Laplacian of H is given by AH = —%(0,0(14), a(;)). Thus from the
condition (*x), we have the following system of differential equations :

0 = —ajaj — ajzay,

(4) " "

(3.11) o, = —a220y — A230Q3,
(4) " "

a, = —az20; — az3zQ,.

From (3.10), we can parametrize as follows :
(3.12) o) =cosb, a, =sinb,

where § = 6(u). Then, differentiating (3.12), we obtain

(3.13) ay = —8'siné, af' = —0"sin6 — 6'% cos b,
ol = (=8" + 6°)sin 6 — 36'6" cos 6,
a;' = @’ cos ¥, a'2" = 6" cos — 6'% sin 8,

alt = (6" — 6"°)cosf — 36'6" sin .
By (3.11), (3.12) and (3.13) we have
(—6" + 6" )sind — 366" cos § = az.8' sin 6 — az38' cosd,

(6" — 8" )cos 0 — 30'8" sin 8 = a3,8' sin 6 — a338’ cos b,

Which give
(3.14)
8" — 8" = 4336 cos® 0 — ays8'sin’ 8 + 8'(a3y + ag3) cos Bsinb,
(3.15)
—36'6" = —ay38' cos® 8 + az,8' sin® @ + 8'(as2 — azz)cosfsiné.
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Now, assume that
Case i) ' # 0. From (3.15), we have
(3.16) —36" = (a3, — a33) cosfsin § — azz cos 8 + a3z sin? 6.
Differentiating this equation, we get
(3.17) —36"" = 6'(az; — asz)(cos® § — sin® 8) + 26'(az3 + a32) cos fsin 6.

Substituting (3.17) into (3.14), we get
(3.18)
(ay2 —4as3) cos? 8+ (a33 —4asz;) sin? 6+ 5(az3 +asz) cos @ sin 0+36'2 =0.

Differentiating (3.18), we get
(3.19) 68" = 10(az2 — a33)cosfsinf — 5(az3 + a3z )(cos® —sin? 6).

From (3.16) and (3.19), we have
(3.20)
(50-23 + 7(132) sin2 6 — (7(123 + 5(132) COS2 0 + 12(022 - (133) cosfsinf = 0.

Hence from (3.20) and (3.11),
ajp = a3 =agp =azr =0, axn =as,
which yields that 8 = :t%u + b, ;_1; =ayp=az, r>0, beR.
Accordingly, we have
a; = trsinf+¢, ¢ €R,
az = Frcos8 +c2, c2 €R.
This representation gives us to
(o —€1)* + (ag — c2)? = r2, r>0.

We denote by S'(r,(cy,cz2)) the circle centered at (c;, ¢z) with radius
r in the plane R?. By the above equation the curve a is contained in
S!(r,(cy,c2)) and hence the ruled surface M is contained in the Lorentz
circular cylinder R} x S.

Case ii) § = 0. By similar calculation with in Theorem 3.1, 8 is
constant on J. So we get that the normal vector N is the space-like
constant vector. It shows that M is contained in R7.

Thus we have
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THEOREM 3.2. The only cylindrical ruled surfaces of type I_ in
R} whose the mean curvature vector H satisfies (xx) are locally the
Minkowski plane or the circular cylinder of index 1.
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