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ABSTRACT. In this paper we are concerned with the initial control problem for an
adsorbate-induced phase transition model. That is, we show the existence of the
initial control and derive the optimality conditions by showing the differentiability
of the cost functional.

1. INTRODUCTION

We consider the following initial control problem
(P) minimize J(u,v)

with the cost functional J(u,v) of the form
T T
Tuo) = [ lyta o) =vallbogoyde + [ otawv) = pallysqend

tr{lluldps@ + 10lGe@}  (wv) € HY(Q) x HA(Q)

where y = y(u,v) and p(u,v) is governed by the adsorbate-induced phase transition
model:

d .
B_Z:“Ay—dy(y+p—1)(l—y) in Qx (0,7,

5? — bAp + ¢V - {p(1 — p)Vx(y)} — feXWp (1.1)
%:%2 on 89 x (0, ],

y(z,0) = u(z), p(z,0)=v(z) in Q.

Here, Q2 is a bounded region in R? of 3 class. n = n(z) is the outer normal vector
at a boundary point z € 902 and a denotes the differentiation along the vector
n. y(z,t) denotes the order pa.rameter which represents the structural state of the
surface at a position z € 2 and a time ¢ € [0,00), and p(z,t) the adsorbate coverage
of the surface Q by a specific kind of molecules. dy(y + p — 1)(1 — y) shows that
the surface has two stable states. ¢V - {p(1 — p)Vx(y)} shows the advection of p
over Q2 induced by the gradient of the local chemical potential x(y) for with mobility
1 — p. fex(®¥) denotes the desorption rate of the molecules depending on x (). x(y)
is assumed to be given smooth function for y, prototype of x(y) is
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x(y) = —y*(3 — 2y).

g denotes the desorption rate of the molecules by a chemical reaction. h denotes the
adsorption rate determined by the pressure of gaseous molecules and the fraction of
the surface being adsorbate-free, (1 — p). a and b are positive diffusion constants.
c,d, f,g,h,a and -y are assumed to be positive constants.

The adsorbate-induced phase transition model was introduced by Hildebrand et
al. [4] and Mikhailov et al. [6]. They showed that microreactors with submicroreac-
tor and nanometer sizes may spontaneously develop in surface chemical reactions by
a nonequilibrium self-organization process. The self-organized micrometers repre-
sent localized structure resulting from the interplay between the reaction, diffusion,
and an adsorbate-induced structure transformation of the surface. They assumed
also that the free energy is associated with the first-order surface phase transition
due to the adsorption of the chemical substance.

In a practical situations, the initial data of the state is unknown or only known
partially. This kind of problem is hard to modelized and it seems that there is a
wide field not very much explored yet. The way used in this paper is the adjustment
of the initial data in order to obtain the desired state from the observed data. Such
problem is treated as an optimal control problem with the initial data serving as the
control.

Many papers have already been published to study the control problems for non-
linear parabolic equations([1], 2], [5], [8]). The method used in this paper is very
analogous to that in [8] handling the chemotaxis-diffusion equations. The advection
terms in the chemotaxis models are given in the form V- {pVx(y)}. Therefore, the
present advection term V - {p(1 — p)Vx(y)} in (1.1) has stronger nonlinearity in p,
which reflects some technical difficulty.

The paper is organized as follows. In Section 2, we recall some known results
and show the existence of the optimal control. Section 3 is devoted to obtaining the
optimality conditions for the optimal control.

Notations. R denotes the sets of real numbers. Let I be an interval in R.
LP(I;H), 1 < p < o0, denotes the LP space of measurable functions in I with values
in a Hilbert space H. C(/;H) denotes the space of continuous functions in I with
values in H. For simplicity, we shall use a universal constant C to denote various
constants which are determined in each occurrence in a specific way by &, M, and so
forth. In a case when C depends also on some parameter, say 6, it will be denoted

by Cg.
2. MATHEMATICAL SETTING
Let Ay = —aA +a and A2 = —dA + g with the same domain D(4;) = H2(Q) =
{z € H¥Q), gﬁ = 0 on 092} (¢ = 1,2). Then, A; are two positive definite self-

adjoint operators in L%(Q). D(A?) = H®(Q) for 0 < 6 < 3 and D(4Y) = H?(Q)
for 3 < 9 < 3 (see [10]). We set two product Hilbert spaces V C M as
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V= H3(Q) x HA(Q), H=H}Q) x H(Q).
By identifying H with its dual space, we consider V C H = H' C V'. It is then seen

that
V' = HY(Q) x L}(9),

with the duality product

(5 e = (AR + (oA 0= () v = (1)

We denote the norms of V, H, and V' by || - ||, | - |, and || - ||+, respectively. (-,-) and
(-,-) denote the scalar product of H and the pairing between V and V.
We set also a symmetric bilinear form on V x V:

Cl(Y, )7) = (Alya Alg)L2 + (A;/zpv Ajlz/zﬁ)LZa Y = (z) ’ )‘; = (%) eV
Obviously, the form satisfies
(Y, V) < M|Y|IY], Y.¥VevV,
aY,Y) 2 4||Y|?, YeV

with some 6 and M > 0. This form then defines a linear isomorphism A = (/(1)1 1;)2)

from V to V', and the part of A in H is a positive definite self-adjoint operator in
H with the domain D(A) = HA(Q) x H3(Q).
(1.1) is, then, formulated as an abstract equation

f%+AY=HYLO<t§i (2.1)
Y(0)=U

in the space V'. Here, F(): V — V' is the mapping
ay +dy(y +p~1)(1-y) ) (y)
F Y = . Y: .
@) (cV {p(1 = p)Vx(y)} — feex®p + k(1 - p) p

Here, U is defined by U = (}).
As verified in [9, Sec. 3], F(-) satisfies the following conditions:

(f.i) For each n > 0, there exists an increasing continuous function ¢y : [0,00) —
[0,00) such that

IFE)l« < allY N+ ¢q(IYD), Y eV,
IF(Y)| < llY llpa) + ea(IY1D, Y € D(A).

(£.ii) For each n > 0, there exists an increasing continuous function ¢, : [0,00) —
[0, 00) such that
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IF(Y)=F(Y)lls < nllY - Y|
+UYI+ YT+ DY+ IYDY - Y], Y,V eV,
|F(Y)=F(Y)| <nllY - Yllpa)
+ (I¥ llpeay + 1Y llpgay + DIV I+ IYIDIY = Y, ¥,Y € D(A).

We then obtain the following result (For the proof, see Ryu and Yagi [8]).

Theorem 2.1. Let (a.i), (a.i), (f.i), and (f.ii) be satisfied. Then, for any U €V,
there exists a unique weak solution

Y € HY(0,T(U); H) nC([0, T(U)]; V) N L0, T(U); D(A))

to (2.1), the number T(U) > 0 is determined by the norm ||U]|.

Now, let U,y be a closed, bounded and convex subset in V and let S > 0 be
such that for each U € Uyq, (2.1) has a unique weak solution Y(U) € H'(0,S; H) N
C([0, S]; V)NL?(0, S; D(A)). Thus the problem (P) is obviously formulated as follows:

(P) minimize J(U),
where s
HO) = [(IY () = YalPdt + VI, U € loa
Here, Yy = (J) is a fixed element of L?(0,S;V). v is a positive constant.

We consider the map U — Y (U) that the initial value U to the corresponding
solution Y (U). We show that the map is continuous.

Lemma 2.2. Let U,V € U,q and let Y(U) and Y (V) be solutions of (2.1) with
respect to U, V, respectively. Then, we have

t
Y(U) - Y(V)]? +/ IY(@)r) - Y(V)(D)lPdr <ClU-V[?, 0<t<S
0
PROOF. It is seen that W = Y (U) — Y (V) satisfies

dVZt(t) + AW ()= F(Y[U))-FY(V)), 0<t<S, (2.2)
woy=U-V.
Taking the scalar product of the equation of (2.2) with W, we have
L LW + (AW (2), W (1)) = (F(Y(U) = F(Y (V)), W (®).
From (a.il) and (f.ii), it follows that
1d
S WP + W@ (23)

<plw @112 + (Y O + 1Y (DI + Dy (1Y O]+ Y (VDWW Ol
S%IIW(t)II2 + CIY P + 1Y (VI + Dbssa(lY (U)] + 1Y (DDIW (0.
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Therefore, by Gronwall’s lemma,
|W ()] < IW(O)IZerS CUY ORPHIY (VI + D)3, (1Y ()Y (V) 2dt

Using this result in (2.3) and integrating from 0 to ¢, we obtain the estimate for

[ -ywmltar. o

Theorem 2.3. There exists an optimal control U € Uyg for (P) such that
J(U) = mm J(U)
PRrOOF. Let {U,} C Usq be a minimizing sequence such that

lim J(Uyp) = Umin JU).

Since {U,} is bounded in V, we can assume that U, — U weakly in V and by the
compactness of V < H, U, — U strongly in H. By Lemma 2.2, Y(U,) — Y(U)

strongly in L?(0, S;V). Therefore, Y (U,) — Yq is strongly convergent to Y(U) -
in L?(0, S; V), we have

< < =
Unelll}:dJ(U) J(U) < hmlnf.](U) rng(n JWU). O

3. OPTIMALITY CONDITIONS

In this section, we show the optimality conditions for the Problem (P). We denote
the scalar products in V and V' by {(-,-)y and (-, )y, respectively. In order to the
optimality conditions, we need some additional assumptions:

F(-) is first-order Fréchet differentiable with the derivative
F'(Y)Z
az+dz(y+p—1)(1 —-2y) +dy(z + w)(1 — y)

=( cV{w(1 - 2p)Vx(y)} + cV{p(1 — p)V(X'(y)2)} ) Y = (i’)) Z= (z)

~fax'(y)ze®xWp — fe*xWy — hw
and the following estimates is satisfied.

Lemma. 3.1. (f.iii) For each n > 0, there exists an increasing continuous function
pn : [0,00) — [0,00) such that

2l ZIIPI+ (Y I+ Dun(IYDIZIINPIL Y, Z,P €V,

F@2 1< { ZP T i+ DY DIZIPL ¥.2.P eV,

(f.iv) There exists an increasing continuous function v : [0,00) — [0, 00) such that
IF'(Y)Z ~ F(V)Z|l. < ClZ|Q + IVl + [YDe(Y I+ IYDIY - Y], Y. Y.Z€eV.
PROOF. The proof is similar to that of [9, Sec. 3]. O
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Proposition 3.2 Let (a.i), (a.ii), (fi), (fii), (fiii), and (f.iv) be satisfied. The
mapping Y : Uyg — H'(0,S;V)NC([0, S]; H)N L2(0, S; V) is Gateaux differentiable
with respect to U. For V € Upq, Y'(U)V = Z is the unique solution in H'(0,S;V')N
C([0, S}; H) N L?(0, S; V) of the problem

dz

S FAZ-F(Y)Z=0, 0<t<5S, (3.1)

Z(0) =V.

PROOF. Let U,V € Uyg and 0 < h < 1. Let Y, and Y be the solutions of (2.1)
corresponding to U + AV and U, respectively. We consider the problem of the
following form

dY,-Y Y- Y F(Vy)-F(Y)
it h h h
Y-V

—(0) =

On the other hand, we consider the linear problem (3.1). From (a.i), (a.ii), (f.i),
(f.ii), and (f.iii), we can easily verify that (3.1) possesses a unique weak solution

Z € HY(0, S; V')F‘IC ([0,S); H)N L?(0,S; V) on [0, , 5] (cf. [3, Chap. XVIII, Theorem
2]. Define Fj, = [} F'(Y +8(Y, — Y))d6. Then W = oY _ 7 satisfies

=0, 0<t<S§,

dIZt(t) + AW (t) — FiW(t) = (F, — F)Z(t), 0<t<S§, (3.2)
W(0) = 0.

Taking the scalar product of the equation of (3.2) with W, we obtain that

S WP + (AT (1), T (1)

—(Fh.W(t) W (b)) + ((F, — F)Z(t), W(2))

S§||W(t)ll2 + (IR + 1Y @I + DE(YA@) + Y ()W (1)
HIZOPAYROI + 1Y @O + De(Ya@®)? + Y (@) Ya) - Y @)%,

where fi, 7 : [0,00) — [0, 00) is some increasing continuous function. Therefore,
TP+ [ 1 (s)1Pds
0
t —
S/O (YR + Y ()P + DA(Yal® + (Y 12)IW (s)|2ds + [[Ya(t) = Y ()1 oo (0,574

t
X /0 (YRS + MY ()P + DE(Ya(s)? + Y ()1 Z(s)]%ds.
Using Y3,Y € C([0,S]; V) and Gronwall’s Lemma,

— t o
W ()| + 0/0 IW (s)lI%ds < ClIYa(t) = Y (t)l13eo 0,550 21l L2(0.5:0)-
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Since Y, — Y strongly in C([0, S}; H), it follows that ﬁ;—y is strongly convergent to

Z in HY(0, S; VYN C([0,S); H)N L*(0,S;V). O

Theorem 3.3. Let U be an optimal control of (P) and let ¥ € HY0,S:H) N
C([0,S]: V) N L%(0, S; D(A)) be the optimal state, that is Y is the solution to (2.1)
with the control U. Then, there exists a unique solution P € HY0,5;:V) N
C([0, S]; H) N L*(0, S; V) to the linear problem

—d—dlt—j FAP-F(Y)P=AY-Yy), 0<t<S, (3.3)
P(S)=0

in V', where A : V — V' is a canonical isomorphism; moreover, U satisfy

(%P(O) +AU,V-U)>0 forall V€Uyq.

PROOF. Since J is Gateaux differentiable at U and U,q is convex, it is seen that
JOYWV-U)>0 for all V € U,g.
On the other hand, we verify that

J @)V -T) = /0 * V(@) = Yo Zyvdt + +{T,V - Thy (3.4)

with Z = Y'(U)(V = U). Let P be the unique solution of (3.3) in H'(0,S:V') N
¢([0, S); H) N L%(0, S; V). From (a.i), (a.ii), and (f.iii), we can guarantee that such
a solution P exists on [0,S] (cf. [3, Chap. XVIII, Theorem 2}). Thus, in view of
Proposition 3.2 the first integral in the right hand side of (3.4) is shown to be

S _ S _
[ @ - Yo 2wt = [ @) - Ya), 2)at
0 0

/S dP - —
=/ (~—p + AP = F'(Y) P, Z)dt = (P(0),V — D).

Hence,
1 — —
(;P(O) +AU,V-U)>0 forall Vel, UO
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HE209) o] S Agel mdd U
2713 Ao EA

)
$4% - -A%¢

AFdgn ey
2 %
B =BojMs HEHAd Qs 459 FHo| 2de] WF 27| Mol EAE thFX o FAAHL

2. 3YY LSS Ao I F5E Hasiste A EAYES BAnh T3 HH A0 EAAM
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