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Abstract

In this paper. we present a new method that combines the characteristics of edge informations and

second-order neural networks for the classification of structural textures. The edges of a texture are

extracted using an edge detection approach. From the edge information. classification features called

second-order features are obtained. These features are fed into a second-order neural network for

training and subsequent classification. It wiil be shown that the main disadvantage of using structural

methods in texture classifications, namely. the difficulty of the extraction of texels. is overcome by the

proposed method.

1. Introduction

In image analysis, texture is broadly classified
into two main categories. statistical and structural
[1). Textures that are random in nature are well
suited for statistical characterization, for example.
as realizations of random fields. They do not have
easily identifiable primitives (e.g.. bark, sand etc.).
the other hand.
characterized by a set of primitives (texels) and

Structural textures, on are
placement rules. The placement rules define the
spatial relationships between the texels and these
spatial relationships may be expressed in terms of
adjacency. closet distance or periodicities. And the
texel may be defined by its gray level, shape or
homogeneity of some local property. Many real-
world textures have thestructural characteristic. A
large number of woven fabrics and commercial
furniture are good examples of purely structural or

semi-deterministic textures. Also microscopic images
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of electron beam textures in steel surface and human
endothelium [2] have structural characteristics. Thus,
structural texture classification has many industrial
applications, such as automatic fabric inspection.
steel surface test and electronic catalog. For these
reasons. structural texture classification is an
important task in pattern recognition applications.
Texture classification approaches can be also
described in two main categories: statistical and
structural approaches ([3]. Statistical approaches
consider textures as complicated pictorial patterns on
which sets of statistics can be defined to characterize
these patterns. In the structural methods, the texture
is considered a cellular and an ordered phenomenon.
Hence the purpose of the first stage of the analysis
is to define the texel Since structural methods
involve a lot of image pre-processing procedures to
extract texels so that they are time-consuming.
statistical approaches are the more efficient approach
(4]. Thus.

for texture matching almost of the
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former methods used statistical approaches regardless
the class of textures. In the classification of
structural textures. however, structural approaches
are superior to statistical methods since the spatial
in the
structural approach [5). Liu et al [6] observed
that the MRSAR proposed in [7] (it belongs to

statistical approaches) is incapable of distinguishing

structure is more strongly emphasized

images where structural textures are involved. This
methods
and the effectiveness of the structural methods in

result showed limitations of statistical

measuring perceptual similarity.

Although structural approaches are well suited
for structural textures. not many researchers have
developed texture analysis techniques using structural
methods since it is difficult to find an appropriate
texel in an input texture during the classification.
The difficulty of the extraction of texelsis due to
two major problems. Since the image textures to
be analyzed generally have texelsof different sizes.
it is difficult to automatically determine the size
of texelf each input texture during the recognition.
The other is that it is difficult to define the
correct texel since textures with the same texe/ may
have more than one configuration. Also various
types of subimages can be extracted in a texture.

In this paper, we present a new method that
combines the characteristics of edge informations
and second-order neural networks that achieves a
high classification rate with structural textures.
Several studies [8.9] had shown that using edge
information in the texture features can achieve
good classification performance. The edges of a
texture are extracted using an edge detection
approach. From edge informations. classification
features called second-order feature spaces are
obtained. These features are fed into a multilayer
perceptron (MLP) for training and subsequent
The network
difficulty of the extraction of texels

can overcome the
by the

classification.
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second-order features and the modified recognition
step. And it requires just one learning sample per
each texture. Thus the proposed method has
simpler architecture and faster learning capability
compared to the existing methods. Experiments
were performed with structural textures extracted
from Brodatz texture database [10]. The results
were compared with another neural-based model
proposed in {113, Although the proposed method is
limited to the classification of periodic textures,
the underlying principles will provide an important
foundation for ongoing researches to develop more
general methods for designing models to classify
textures.

2. Texture classification

Texture is observed in the structural patterns of
surfaces of objects such as wood. grain. grass and
cloth. The term texture generally refers to repetition
of basic texture elements called texels [111. A
texelcontains several pixels. whose placement could
be periodic. quasi-periodic or random. Natural
textures are generally random. whereas artificial
textures are often deterministic or periodic. Texture
may be coarse, fine. smooth. granulated. rippled.
regular, irregular or linear.

A large number of approaches for texture feature
extraction and classification have been developed
[12.13]). Methods using markov random field
(MRF) models were proposed [14.15,16,17). Gimel
et al. [17] proposed a MRF model with a Gibbs
probability distribution for describing particular
classes of uniform stochastic textures. Mao et al
[7] proposed simultaneous auto-regressive models
to perform texture classification and segmentation.
Haralick (12] and others [18,19] gray tonedependence
co-occurrence matrices to represent texture. Unser
et al. [4] and others {20.21.22] proposed methods
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using adaptive spatial filters. Gabor filter based
methods were also proposed [23.24.25]. The use of
Gabor filters in extracting textured imagefeatures
the fact that the Gabor
representation has been shown to be optimal in

is motivated by
the sense of minimizing the joint two-dimensional
uncertainty in space and frequency [24]. Chen et
al (3] used statistical geometrical features for
textures. Wavelet based feature extraction methods
[26.27]. neural network based filtering methods
[11.28,29.30,31] and methods using Fourier power
spectrum [32] were also proposed for texture
classification and segmentation. Liu et al [6] and
others [33.34) used Wold transform to represent
the

geometrical features of texture primitives as the

textures. The structural approaches use
texture features. Several edge-based methods have
been proposed [35.36]. these generally attempt to
locate texture edges based on the computation of
a multifeature gradient-like operator. Patel et al
{37] calculate edged direction using 3x3 masks
then used rank order statistics to produce the
texture features. Hierarchical approaches using
pyramid node linking [38] or applying the split-
and-merge algorithm to the co-occurrence matrix
{39] have been also described.

Since statistical methods characterize the interaction
among neighboring image pixels, they are appropriate
for modeling random fields with continuous spectra
and random textures. When compared to statistical
approaches. structural approaches have some
advantages where deterministic textures are considered
Rao et al[40] has indicated that the three most
important perceptual dimensions in natural texture
discrimination can be described as “repetitiveness.”
“directionality,” and “complexity”. Among them
“repetitiveness” is the most important dimension
of human perception for structural textures. Since
structural approaches try to find an elementary

region of a texture and use this for classification,
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they can measure the preceptual similarity well.
To deal with structural textures efficiently. we
propose a new second-order neural network using

second-order feature spaces in section 3.

3. Second-order Neural Networks

The output of a node / denoted by > in a

general higher-order neural network is given by

yi =Oh)

=X, Wyx; +2,; 2, Wy xjx, +

where © is a nonlinear threshold function. *. is
the net input of node 7 the values of x are the
and the

matrx elements W. The second-order neural network

values of input nodes. interconnection
uses only the second-order term in the activation
function of a higher-order neural network. Thus
the output for a second-order network is given by

¥i =OM) =0 ; X Wy x;x,) )

The inputs are first combined in pairs and then
output is determined from a weighted sum of
these products. Figure 1 shows the architecture of
a strictly second-order neural network. Giles et
al[41] showed that the invariances achieved using
this network depend on the constraints placed on
the The most of

second-order neural networks is that the number

weights, severe limitation
of input nodes required for an mxn image is
o«~n)*). This makes the implementation difficult.
Spirkovska et al [42] solved this problem using
coarse coding which involves the use of overlaying
fields of coarser pixels in order to represent
smaller pixels.

There have been other approaches based on the

invariant features for solving the problem. Schmidt
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Figure 1. A strictly second-order neural network

et al[43] showed that the constraints placed on
the weights in a second-order network can be
implemented using the summations of products of
each pair of input pixels. This summation of the
product at given relative positions or prescribed
positions is called SOP (Summation Of Products).
They concluded that a second-order neural network
to a specific deformation can be considered as a
standard MLP using second-order features that
are invariant to a deformation. Using this scheme,

A.original pattern  B. translated pattern

T

C. wrap—translated  D. wrap—translated
in the row direction in the column direction

Lee et al [44] and Kwon et al [45] proposed
second-order neural networks invariant to types B
and C in Figure 2, which have 2= ) input nodes.
Now. we consider a two-dimensional image B of
size m»n as an input. In this case, we extend the
notion of distance windows to two dimensions.
kinds
patterns in this paper, we consider four copies of

Since we allow all of wrap-translated
B to compute second-order features as shown in
Figure 2-G. Using this schemem. we can correctly
compute the second-order features of image B
after performing the algorithm.

4. The architecture of the proposed model

The proposed classification scheme is comprised
of a structure of edge extraction and a second-
order neural network. First, an edge map of the
size mxn of an input image is generated, where
mxn is the dimensionality of an input image.
Then the second-order neural network receives the

F. 1-D feature extraction

nij- distance window

H EEE EE EEE N

n+j—E

G. 2-D feature extraction

Eif

distance window

E. wrap—translated in both directions

B(x jy

=(4.4) Ix=3
Iy=1
B(kx, ky)
kx = (jx+ix) mod m = 3
ky = (iy+ly) mod n =1

Figure 2. Translation invariances in a second-order neural network
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edge map from the edge extraction stage and
extracts mxn dimensional feature spaces, which are
called second-order feature spacesin this paper.
The transformed feature vectors are fed into the
MLP for classification.

The MLP has the
training and the recognition. In the training phase.

two consecutive phases,

two different strategies were adopted in contrast to
the MLP training. The number of
input nodes were defined by the dimension of the

traditional

largest texel since the MLP may receive texels
with various sizes. If three sample texels with 3x3.
5x5 and 3x5 sizes are considered, then the MLP
has 25(5x5) input nodes. In order to apply the
network to smaller texels, outsized vector
components are filled with zero. The other is that
all pairs (m.n) of sample texels are recorded in
the internal table of the network. where m is the
row size of a texe/ and n is the column size. This
record will be used to solve the size variance of
texelsin the recognition phase. The contents of the
table can be shown in the right side of the Figure
8 after texels of sizes 10x10, 15x10 and 30x30
were trained.

The recognition phase of the trained network was
modified compared to the traditional recognition
phase of the neural network. Using each entry of
the internal table, the output of the network is

computed with second-order features from mxn

Algorithm: Recognition

pixels from a random position of a test image.
Then the node with
selected for the recognition result for each entry. If
(10.10), (15.10) and (30.30) are the current entries
of the internaltable. three nodes are selected for all

the maximum value is

entries. Each selected node represents the result for
each window size. From all the selected nodes. the
node with the maximum value is considered as the
final recognition result of a test image. Figure 3
shows the algorithm recognition.

5. Experimental results

The performance of the proposed scheme was
analyzed using a variety of structural textures.
including the Brodatz photo album [10]. Twenty
deterministic textures of size 128x128 were used
for experiments. These images were categorized in
four sets according to the size of texel which are
15<15, 15%20. 20<20 and 30<30. For the training
of the network. texels within images were extracted
manually and applied tothe network. The MLP
adapted its weights according to the learning rule
(backpropagation) and recorded the size of applied
texel Since the proposed network is a second-
order neural network. the network needs to be
trained on just one texel/ of each texture, not on
Such generalization

numerous distorted views.

extract features from m x n pixels from an arbitrary position of a test image
select one node with maximum output from all nodes
save the number of node, the window size and the value of the node

1: for each entry (m,n) in the internal table do
2

3

4

5: od

6: for all selected node i do

7 final result « maz (output(s))

8: od

9: end

Figure 3. The algorithm for the recognition phase
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has been demonstrated in numerous simulations
(42]. In the recognition phase, the trained network
extracted a pattern from a random position of
each texture and classified it using the algorithm
Recognition. This recognition test was performed
20 times for one image. Thus the total number of
recognition tests was 400 (20 times per texture).
The performance of the proposed scheme was
compared with the model proposed in [11]. which
belongs to the statistical approach. This model
used a set of Gabor filters for extracting texture
and structure that combined the
characteristics of SOM(Self Organizing Map) and
first-order MLP for classifications. It was trained
using features from 400 (20x20) pixels from the

features a

center of each texture. Then the classifications
were performed by the same way used in the
proposed system. The comparison between two
systems will show the superiority of the proposed
system to statistical systems in the classification
of deterministic textures.

The simulation results are listed in Table 1.
Both of the did not achieve 100%

accuracy on experiments. However. the proposed

systems

system produced better recognition results than the
compared system. Since it can not be predicted
which type of translation has occurred, the first-
order MLP needs more training patterns(41.42.43],
while the second-order MLP using second-order
feature spaces did not require more than one
pattern. We also observed that errors can be
eliminated by some parameters of the edge
detection. Various edge images can be obtained by
changing three parameters of the edge detection
algorithm.

From the evaluation results, it can be seen that
the proposed method has good characteristics for
deterministic texture classification compared to the
existing models. These characteristics are due to

capabilities of second-order feature spaces.
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Table 1. Recognition results of the experiments

Pattern id T1| T2 | T3 | T4
(# of E‘:riesiofe(;i)esmtions) Wjajww0
(# of Tcgfr:cotmrzi(r):(rilitions) R
T5 | T6 | T7 | T8 | T9 [ T10| TI1 | Ti2
20119 |2 |20 192 ] 20|19
6|10 |12]17|19] 81218
T13| T14 | T15 | T16 | T17 || TI8 | T19 | T20
20 | 20 | 20} 20 | 17 || 20 | 20 | 18
201 7 |16 15] 18] 16| 6 | 16

6. Conclusion

In this paper we have proposed a new two-stage
model for the classification of deterministic textures.
The model used second-order feature spaces of
edge map of each texel for feature extraction. The
results were achieved by a second-order neural
network trained by the backpropagation algorithm.
The evaluation of the model with a set of
deterministic textures was performed and compared
to another neural-based method proposed in [11].
As a result. our method showed better classification
results than the compared model.

It was found that second-order feature spaces
solved the basic problem which occurs in the
deterministic texture recognition, the translation
variance of texel And modified learning and
recognition phases solved the size variation of
texels. Also it can be implemented more easily
than the existing methods because of its simplicity.
Finally, the proposed model is size limited since
the dimension of second-order feature spaces s

also of the size mxn for an mxn input image.
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Further research will be conducted for recognizing
textures which consist of more than one texel
Researches for classification of deterministic textures

with noise distortions will be also conducted.
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