J. of Basic Sciences, Cheju Nat' Univ M- ST T
14(1). 115~ 124, 2001 1401), 115~ 124, 2001

Linear Operators That Preserve Maximal Column
Rank of Fuzzy Matrices

Seok-Zun Song , Soo-Roh Park
Cheju National University, Cheju 690-756, South Korea

Abstract

For each m > 2 and n > 3, we characterize the linear operators, T,
on the set of m x n fuzzy matrices that preserve maximal column rank.
That is, T preserves maximal column ranks if and only if T strongly
preserves maximal column rank 1 and it preserves maximal column
rank 3. Other characterizations of maximal column rank-preserving
operators are also given.

1991 Mathematics Subject Classification: Primary 15A03, 15A04.
Key words and phrases: Operators, fuzzy matrices, maximal column rank.

1 Introduction

There are many papers on the study of linear operators that preserve the
semiring rank and the column rank of matrices over several semirings. Beasely
and Pullman (2] obtained characterization of linear operators that preserve
semiring rank of fuzzy matrices. Song [6] characterized the column rank
case.

In this paper, we study the extent to which known properties of linear
operators preserving the semiring ranks and the column ranks of matrices
over 'chain semiring’ (see Section 2) carry over to operators preserving max-
imal column ranks. We obtain some characterizations of linear operators
that preserve maximal column rank of fuzzy matrices and of matrices over
chain semirings which is more general than the Boolean algebra.
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2 Preliminaries

A semiring is a binary system (m x n, 4, x) such that (S, +) is an Abelian
monoid (identity 0),(S, x) is a monoid (identity 1), x distributes over +,
Oxs=sx0=0forall sinS and 1 # 0. Usually S denotes both the
semiring and the set and x is denoted by juxtaposition.

Let the set of m X n matrices with entries in a semiring S be denoted by
My, »(S). The zero matrices Om, and the n X n identity identity matrix I,
are defined as if S were a field. Addition, multiplication by scalars, and the
product of matrices are also defined as if S were a field. If V is a nonempty
subset of S¥ = My, ;(S) that is closed under addition and multiplication by
scalars, then V is called a vector space over S. The notions of subspace and
of spanning or generating sets are the same as if S were a field. We will use
the notation < W > to denote the subspace spanned by the subset of W
of V. A set G of vectors over S is linearly dependent if for some g € G ,
g €< G\{g} >. Otherwise, G is linearly independent. The mazimal column
rank, mc(A) = mcs(A), of an m x n matrix A over S is the maximal number
of the columns of A which are linearly independent over S. As with fields,
a basis for a vector space V is a generating subset of the least cardinality.
That cardinality is the dimension , dim(V), of V. The column space of an
m x n matrix A over S is the vector space spanned by its columns. The
column rank, c(A) = cs(A), of an m x n matrix A over S is the dimension
of the column space. The semiring rank of a nonzero matrix A in Mm »(S)
is the least integer k such that A = BC for some m x k and k x n matrices
B and C over S. The semiring rank of the zero matrix is 0. we denote the
semiring rank of A by r(A) or rs(A).

It follows directly from the definitions that for all m x n matrices A over
S:

(2.1) 0 < rs(A) < cs(4) < mes(4) < n;

(2.2) The semiring rank of a nonzero matrix A is the minimum number
of semiring rank 1 matrices which sum to A([2, Lemma 2.1]).

Let S be any set of two or more elements. If S is totally odered by <,
that is, S is a chain under < (ie. z < y or y < z for all distinct z,y in
S), then define r + y = maz(z,y) and zy = min(z,y) for all z,y in S. IfS
has a universal lower bound and a universal upper bound, then S becomes
a semiring; a chain semiring.

Let H be any nonempty family of sets ordered by inclusion, 0 = Nzen Z
,and 1 = ey z. Then S = H U {0, 1} is a chain semiring. Let o,w be
real numbers with o < w. Define S = {8 : 8 € [a,w]}. Then S is a chain
semiring with o =" 0" and w =" 1". It is isomorphic to the chain semiring
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in the previous example with H = {[o, 8] : & < 8 < w}. If in particular we
choose the real numbers 0 and 1 as & and w in the previous example, then
each m x n matrix over {3:0 < 3 <1, [ isreal} is the fuzzy matriz.

It is already known that:

(2.3) The column rank of a matrix over a chain semiring is unchanged by
pre-or post-multiplication by an invertible matrix. Furthermore, the column
rank of a 2 x 2 matrix is unchanged by transposition([6, Lemma 2.1}).

If we take to be a singleton, say {a}, and denote the empty set by 0 and
{a} by 1, the resulting chain semiring is merely the binary Boolean algebra,
and denoted by B.

Hereafter, otherwise specified, K will denote a chain semiring which is
not the binary Boolean algebra , all matrices will denote the m x n matrices
over a chain semiring and we will write M or M(K) for My, »(K).

Beasely and Pullman [3] obtain the following relation between semiring
rank and column rank over My, »(K) and M, »(B) .

Theorem 2.1. ([3, Theorem 2 and 3]) Let (S, m,n) be the largest integer
k such that for all m x n matrices A over S, r(A) = ¢(A) if r(A) < k and

aS,m,n) be the largest integer k such that for all m x n matrices A over
S, c(A) = mc(A) if c(A) < k. Then

(1) for any chain semiring K, we have

2 ifm>2andn =2,

w(K,m,n) = { 1 otherwise.

(2) for the binary Boolean algebra B,

1 whenever min(m,n) =1,
w(B,m,n) =< 3 forall m>3and n=3,
2 otherwise.

We give the following example for Theorem 2.2.

Example 2.1. Let p be a nonzero nonunit element of K. Consider,

_(p 01
A= ( 0 p 1 ) '
Since all the three columns of A are linearly independent, mc(A) = 3.

But ¢(A) = 2, because ( (1) ) and ( (1) ) generates < A > .
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Lemma 2.1. ([4, Lemma 2.2]) Over any semiring S, if mc(A) > c(A) for
some p x q matriz A, then for allm > p and n > ¢, a(S,m,n) < c(A).

Theorem 2.2. Let K be a chain semiring. Then we have

2 ifm= n =2,
1 otherwise.

a,mym) = §

Proof. Consider the matrix A in Example 2.1. Then by lemma 2.1, we
may conclude that

a(K,m,n) <1 ifm>2 andn > 3.
If ¢(B) = 1, then clearly mc(B) = 1, for any matrix over K. Thus,
a(K,m,n)=1 ifm >2 andn > 3.

Suppose m = n = 2 and ¢(A) = 2. If mc(A) = 1, one column, say first, is
the scalar multiple of the second column. But this is impossible, because
¢(A) = 2. Hence ,

ao(K,m,n)=2 ifm=n=2.
It is trivial that a(K, m,n) = 1, for other values of m and n. O

Lemma 2.2. ([3]) If the columns of A € My, »(B) are linearly independent,
then mc(A) = ¢(A) = n.

Since 1 is the only invertible member of the multiplicative monoid of K,
the permutation matrices (obtained by permuting the columns of I,,) are
the only invertible members of M, ,, (K).

Lemma 2.3. The mazimal column rank of a matriz is unchanged by pre-
or post-multiplication by an invertible matriz. Furthermore, the mazimal
column rank of a 2 X 2 matriz is unchanged by transposition.

Proof. The results follow from Theorem 2.2 using (2.3). a

A function T mapping My, »(S) into My, »(S) called an operator on
Mm n(S). The operator T

(i) is linear if T(aA + BB) = oT(A) + BT(B) for all o,8 € S and all
A, B € My x(S),
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(i) preserves semiring rank h if, for any A € My, ,(S) with r(4) = h,
r(T(A)) = r(A),

(iii) preserves column rank k if, for any A € My, ,(S) with c(A) = k,
c(T(A)) = c(4),

(iv) preserves mazimal column rank [ if, for any A € My, ,(S) with c(A) =
l, me(T(A)) = me(A),

(v) is a congruence operator if there exist invertible martices U and V
in Mm m(S) and My, (S) respectively such that T(A4) = UAV for all
A € M, (S)

(vi) is a transposition operator if m = n and T(A) = A! for all 4 €
M, »(S).

Lemma 2.4. Congruence operators on My, ,(F) are linear, bijective, and
preserves all mazimal column rank.

Proof. Linearity follows from the linearity of matrix multiplication. The
rest follows from Lemma 2.3. O

Let ji denote the column vector of length k all of whose entries are 1,
and Jn, the m x n martix all of whose entries are 1. When the orders are
understood, we may drop the subscript on j; and J,,,,,. Let E;j bethemxn
matrix all of whose entries are 0 except the (2, 7)th, which is 1.

Let X € Mp,,n (K). The norm || X|| of X is defined by || X|| = j*Xj the
sum of all entries in X. That is, || X| is the maximum entry in X. Note the
mapping X — || X|| preserves matrix addition and scalar multiplication.

Lemma 2.5. ({6, Lemma 2.3]) Suppose

(2 h)

Then c¢(A) = 2 if and only if ad # be.

=(22)

Then mc(A) = 2 if and only if ad # be.

Lemma 2.6. Suppose
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Proof. mc(A) = 2 if and only if ¢(A) = 2, by Theorem 2.2. The result
follows from Lemma 2.5. O

Lemma 2.7. If H is a submatriz of A, then mc(H) < mc(A).

Proof. Tt is clear from definition of the maximal column rank. O

3 Linear Operators that preserve maximal column
rank over M, ,(K)

In this section, we characterize linear operators that preserve maximal col-
umn rank over My, ,(K). Hereafter, we shall adopt the convention m < n,
and the set of matrices of maximal column rank 1 over a fixed chain semir-
ing K is denoted by C;. Two maximal column rank 1 matrices A, B are
said to be separable if there is a matrix X with me(X) = 1 such that either
= mc(A+ X) <me(B+ X) orl =me(B+ X) < me(A+ X). In this
case, X is said to separate A from B.
Using Theorem 2.2 we can apply some results in [6] for column rank 1
matrices to those for maximal column rank 1 matrices. Thus we obtain the
following Theorem 3.1 by the analogue proof of that in [6].

Theorem 3.1. Distinct mazimal column rank I matrices are separable if
and only if at least one of them is not a scalar multiple of J.

The symbol < is read entrywise, i.e. X <Y if and only if z;; < y;; for
all (¢, 7).
Lemma 3.1. ([2, Lemma 4.3])

If T is a linear operator on Mp, »(K), min(m,n) > 1, T preserves norm,
and A < T(A), then TI(A) = T™ (A) for all ¢ > mn.

Lemma 3.2. Let T be a linear operator on Mp, »(K) with min(m,n) > 1.
If T preserves norm and mazimal column rank 1 but is not injective on Cj,
then T reduces the mazimal column rank of some matriz from k(> 2) to 1.

Proof. Since T is not injective on Cy, T(A) = T(B) for some A, B in C; with
A#B. If A=aJ and B = 8J, then o = 3 because T preserves norms,
contradicting our assumption that A # B. Therefore by Theorem 3.1, some
matrix X of maximal column rank 1 separates A from B. Say, mc(A+ X) =
1 and mce(X + B) =k > 2. Since

T(X + B) = T(X) + T(B) = T(X) + T(A) = T(X + 4),

T reduces the maximal column rank of X + B from & to 1. a
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We say that a linear operator T on My, (K) strongly preserves mazimal
column rank 1, provided that me(X) = 1 if and only if me(7T(X)) = 1.

Lemma 3.3. If T is a linear operator on My, n(K) min(m,n) > 1, and T
strongly preserves mazimal column rank I, then T preserves norm.

Proof. Let A € My n(K),a = ||A| and 8 = || T(A)||; then A = aA and 8 =
T (A = |T(aA)|| = a||T'(A)]| £ a. Suppose § < a. Then for some (¢, 7),
a;; = a. LetY be the matrix whose entries are all a except for yi; = 0. Then
aJ =A+Y. Somc(A+Y) = 1. Since mc(fA+Y) > 2 by Lemma 2.6 and

Lemma 2.7, but mc(BA+Y) < 2 by construction, we have mc(BA+Y) = 2. -
By linearity of T and definition of 8, we have T(BA) = BT (A) = T(A).
Hence T(BA+Y)=T(BA)+T(Y)=T(A)+TY)=T(A+Y) = oT(J).
So T reduces the maximal column rank of BA + Y from 2 to 1, contrary to
our hypothesis. Thus T' preserves norm. O

Lemma 3.4. Suppose T is a linear operator on My, »(K) and min(m,n) >
1. If T strongly preserves mazimal column rank 1, then T permutes I', where
I={E;:1<i<m,1<j<n}

Proof. By Lemma 3.3, T preserves norm. Therefore by Lemma 3.2, T is
injective on Cy. Suppose T(E,,) is not in I' for some (p,q). Now T(Epq) =
> 7ijEij, for some 7;;. But ||T(Epg)|l = 1, so Ty = 1 for some (u,v).
Without loss of generality, we may assume that (u,v) = (p,q), because if
P,Q are permutation matrices, then the linear operator X — PT(X)Q
preserves the maximal column ranks that 7' preserves (see Lemma 2.3.)
and permutes I' if and only if T does. Let E = E;,. Then E < T(FE),
so E # T(E) < T*(E) < --- < TK(E) = T**"(E), where k is the least
integer for which equality holds and A > 0 is arbitrary. By Lemma 3.1, we
are assured that k exists and is less than mn. Let B = T*~1(E). Then
B # T(B) but T(B) = T(T(B)), despite the fact that B, T(B) are both in
C; and T is injective on C;. This contradiction implies that T maps I' into
I'. By injectivity, T permutes I O

Let B be the two element subsemiring {0,1} of K, and « be a fixed
member of K, other than 1. For each z in K define z% = 0 if z < ¢, and
z% = 1 otherwise. Then the mapping z — z% is a homomorphism of K
onto B . Its entrywise extension to a mapping A — A® of M(K) onto M(B)
preserves matrix sums and products and multiplication by scalars. We call
A% the a — pattern of A.
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Example 3.1. For a nonzero nonunit p € K, consider

A=

oW 3
i~
— 3

Then mc(A) = 3, because all the three columns of A are linearly inde-
pendent. But mc(A*) = 2. Consider B = A® 0py_3.m—3 for allm > 3. If
T is a transposition operator over My, m(K), then T(B) = B! has mazimal
column rank 2 while mc(B) = 3. Thus a transposition operator does not
preserve mazimal column rank 3.

Earlier, linear operators that preserve semiring rank and column rank
over M(K) were characterized in [2] and [6], respectively. Also linear opera-
tors that preserve maximal column rank preserving operators over My, ,(B)
were characterized in {4]. For our purpose, we write those results as follows;

Lemma 3.5. (1) ([2, Theorem 4.2]) Suppose T is a linear operator on
Mpn(K) with n > m > 1. Then T is bijective and preserves semiring
rank 1 if and only if it is in the group of operators generated by congruence
and transposition operators.

(2) ([6, Theorem 38.3]) Suppose T is a linear operator on My, »,(K) with
m > 2 andn > 3. Then T strongly preserves column rank 1 and it preserves
column rank 8 if and only if it is a congruence operator.

(3) ({4, Theorem 3.2]) Suppose T is a linear operator on My, ,(B) for
n >m > 4. Then T preserves mazimal column ranks 1, 2 and 8 if and
only if it is a congruence operator. Moreover the transposition operator on
M, m(B) does not preserve mazimal column rank 3 for m > 4.

We say that an m x n matrix X is a column matriz if X = x(e;)? for
some x € S™ and e; € S”, where e; is the vector with 1 in the ith position
and 0 elsewhere. '

Theorem 3.2. Suppose T is a linear operator on the m x n matrices over
a chain semiring K, where m > 2 and n > 3. If T strongly preserves
mazimal column rank 1, and it preserves mazimal column rank 3, then T is
a congruence operator.

Proof. Let M = My, ,(B). Lemma 3.4 and linearity imply that T maps M
into itself. Let T denote the restriction of T to M. From the definition of
maximal column rank, the maximal column rank mcg(X) of a member X of
M is at least mcg(X), its maximal column rank as a member of M, »(K),
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because B C K. On the other hand, the mapping that takes a matrix A in
M, »(K) to its 0-pattern A® in M preserves matrix sums and multiplication
by scalars. Hence mcg(X) = mcg(X) for all X in M. Therefore T strongly
preserves maximal column rank 1, and it preserves maximal column rank 3.

Case 1 (n > m > 4). Since T also permutes I' by Lemma 3.4 and it
strongly preserves maximal column rank 1, 7 must map a column matrix
either a column matrix or transpose of a column matrix if m = n > 4.
For the latter case, T is a composition of a transposition operator and
pre-multiplication by a permutation matrix. Since transposition operator
cannot preserve maximal column rank 3 by Lemma 3.5(3), T must map a
column matrix to a column matrix. Thus the linearity of T implies that
mcp(T (X)) < meg(X) for all X in M. In particular, T preserves maximal
column rank 2. Hence T is a congruence operator on M by Lemma 3.5(3).
Then T(X) = UXV for some invertible matrix over M. Notice that ma-
trices U, V are also invertible over K; in fact, they are just permutation
matrices. Let A € M(K). Then T(A) = ZaijT(Eij) = EaijT(E,-j), be-
cause each E;; is in M(B). Since T(E;;) = UE;;V for all 4, j by definition of
congruence operator, the result follows directly from the linearity of matrix
multiplication.

Case 2(n = 3 and 2 < m < 3). Theorem 2.2 guarantees that T strongly
preserves column rank 1. Note that mep(X) = 3 if and only if cg(X) = 3 by
Lemma 2.2 and (2.1). Hence it preserves column rank 3, because if cg(X) =
3, then 3 = mep(X) = mep(T(X)) = cg(T(X)). Also, T strongly preserves
semiring rank 1 and it preserves semiring rank 3, by Theorem 2.1(2). If
rg(X) = 2 for X € M, then X can be factored as a sum of two matrices X
and X, whose semiring ranks are 1, by (2.2). Thus T(X) = T(X;) + T(X3)
has semiring rank two or less. Since T strongly preserves semiring rank
1, rg(T(X)) = 2. That is, T preserves semiring rank 2. Therefore T is
in the group of operators generated by congruence (and if m = n = 3,
also the transposition) operators by Lemma 3.5(1). Let A € M. Then
T(A) = Y ai;T(E;) = ZaijT(Eij), since each E;; is in M. By similar
argument as in case 1, there are permutation matrices U and V (m x m and
n x n respectively) such that in the case n = 3 and m = 2, T(A) = UAV,
while in the case m = n = 3, T(A) is either UAV or UA'V. However,
since transposition operator does not preserve maximal column rank 3 by
Example 3.1, we see that in fact, 7" must be a congruence operator. O

Theorem 3.3. Suppose T is a linear operator on the m x n matrices over
a chain semiring with m > 2 and n > 3. Then the following statements are
equivalent:

- 123 -



¢
R4

4

ME WFZ

0

(1) T preserves all mazimal column ranks.

(ii) T strongly preserves mazimal column rank 1 and it preserves mazimal
column rank 3.

(113) T is a congruence operator.

(iv) T is bijective and preserves mazimal column ranks I and 3.

Proof. It is obvious that (i) implies (ii). Theorem 3.2 establishes that (ii)
implies (iii). According to Lemma 2.4, (iii)implies (i) and (iv). If T satis-
fies (iv), then T is in the group of operators generated by congruence and
transposition operators by Lemma 3.5(1) and Theorem 2.2. Since the trans-
position operator does not preserve maximal column rank 3, T must be a
congruence operator. Therefore, (iv) implies (iii). a

How necessary is it that m > 2 and n >3 7 If m = n = 2, then
a linear operator that preserves all maximal column ranks is the same as
a linear operator that preserves all column ranks by Theorem 2.2. The
characterizations of the column rank preservers were obtained in [6]. Thus
we have characterizations of the linear operators that preserve the maximal
column rank of matrices over a chain semiring(and in particular, of fuzzy
matrices) when m > 2 and n > 3.
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