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A Solution to translation of the two dimensional wavelet

transform using a second-order neural network
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1. Introduction

Image processings using the wavelet transform in two dimensions (2D-WT) have been a
very active research area in recent years because the 2D-WT possess many good properties.
For example, the 2D-WT provides a simple hierarchical framework for interpretating the
image information and enable us to have a scale-invariant interpretation of a image. Also,
important information of a image, such as edges, is better characterized by 2D-WT due to its
good locality in both time and frequency domains[1,2,3]. In addition, the computation of the
2D-WT of a given image is very fast and efficient with multirate filterbank.

Daubechies[4] studied important properties of a wavelet transform and its discretization.
Meyer and Stromberg found a very important class of discrete wavelet transform called
orthogonal wavelets[1,2,3]. Mallat[S] showed that the computation of the wavelet transform
can be achieved with a pyramidal algorithm based on convolutions with quardrature mirror
filters. These algorithms are a good tool for image processings.

However, the discrete 2D-WT can not be used for pattern recognition directly. In pattern
recognition, patterns might be located anywhere in the image. Hence, it is necessary to build
an image representation which is invariant to translation. The discrete 2D-WT does not have
this property[5,6]. Its results are given in a translated representation including wrap-around.

There have been three different approaches to solve the translation problem of the
discrete wavelets. The first approach focuses on finding wavelet bases that are amicable to
translation while keeping the methods of calculating wavelet transform. These methods are
efficient in terms of computation complexity. However, in many cases, it is difficult to find

wavelet bases for the specific domain. The second approach is to use a large redundant
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library of wavelet bases that correspond to different translations[5,6,7]. Mallet represented a
signal using the zero crossing representation in the wavelet domain. Though the second
approach offers a lot of flexibility, the computation is usually intensive and the orthogonality
is not preserved. The third approach is to use variable sampling rates or adaptive sampling
rates[8,9]). However this approach considerably increases the redundancy of the representation.
Recently, Liang and Parks[9] proposed a new method based on the third approach. They
described a translation invariant 2D-WT using symmetric extension and tree search algorithm.
This method satisfies translation invariant, size limited(= the output coefficients are of the
size NxN for a NxN input image) and has reduced edge effects. But, requirements, such
as additional preprocessing step(=symmetric extension of a input signal) and a cost function
for a tree search algorithm, make it hard to understand and implement.

In this paper, we propose a new method to solve the translation problem of the discrete
2D-WT The proposed method uses a second-order neural network which has translation
invariance including wrap around. The method is simpler and can be implemented easily than
the existing methods. 80 images (20 images per one airplane) were used for the experiments.
Each set of 20 images has the same but translated airplane pattern. Our method recognizes
80 images correctly regardless of the positions of the pattern. These results indicates the

efficiency of the proposed system.

2. The discrete two dimensional Wavelet Transform (2D-WT)
Morlet[10] defined the wavelet transform by decomposing the signal into a family of
functions which are the translation and dilation of a unique function ¢(x) called a wavelet.

The two dimensional wavelet transform of a function Ax,y) € L*(R?) at the scale s

and a point (%, v) is defined by [11]
Wi, (u, v)) = f_+:f_+:f(x,y)s¢(s(x— u), s(y— v)) dxd)y ¢y

where ¥(x,y)eL*(R?) is a function whose Fourier transform (w, w,) satisfies
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Let ¥(x,y)=sW(sx,sy) and P (x,y)=s¥(—x,—y). The wavelet transform of Ax,y)

at the scale s and a point (% v) can be rewritten as a convolution product
WHs, (u, v)) = f+ Tl u, v) 3)
The two dimensional wavelet transform can be discretized by sampling both the scale
and the translation parameters [12]. A sequence of scales () jez is selected, where o is

the elementary dilation step. For each scale ¢, the translation vector (u,v) is uniformly

sampled. Let Bz ™’ be the sampling rate at the scale o’. The discrete 2D-WT is defined by
Wifls, (n, m)) = WA, (28, 78 = fo (28 | 220 @)

A discrete wavelet transform for ¢=2 and S=1 corresponds to a wavelet orhonormal basis.
Mallet[5] showed that the wavelet transform of a function in such a wavelet orthonormal
basis can be computed with a quadrature mirror filter bank. Therefore, the discrete 2D-WT
can be computed with a pyramidal algorithm based on convolutions with quadrature mirror
filters{2,5,11,12,13,14,15]. This algorithim is illustrated by the Figure 1. The filters G and H

are the quadarture mirror filters.
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Figure 1. Decomposition of an image A‘;f-.J into A’z, and D'zJ, Dzz,j and D32,j

Although the discrete 2D-WT has good capabilities for the image processing, it cannot
be used for pattern recognition application. In order to use the discrete 2D-WT for pattern

recognition applications, we must be able to build models of patterns within the wavelet
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representation. The patterns can be located anywhere in the image. Hence, the models must
be independent from the pattern location. When a pattern is translated, its model should only
be translated but not modified. Unfortunately, the discrete 2D-WT does not verify this
translation invariant property[5,6,7,8]). Figure 2 shows the two original images composed of
the same but translated airplane pattern and results of their one layer decompositions. In the
figure 2, it can be seen that the decomposed images are varied according to the positions of
the pattern in images. They are translated with possible wrap around. This problem must be

solved for the effective use of the discrete 2D-WT in pattern recognitions.

e

e

(a) original images (b) transformed images

Figure 2. Various positions of a pattern in images and their transformed images

3. Wrap-translation invariant second-order neural networks

Since the discrete 2D-WT maps input images into translated subimages with possible
wrap around, it cannot be used for pattern recognition directly. In this section, we present a
second-order neural network which has translation and/or wrap-around(wrap-translation)
invariant property.

The net input %, for a node i in a second-order neural network is given as follows[17].
hi= 2} Winx '+ 2}2 Wiinx g st 2} Wix;+ W, (5)

x;'s : the pixel values of the input nodes
In equation (5), we need to take only the two dimensional correlation terms into account to
obtain wrap-translation invariance. Second-order neural networks can be trained for invariances
by adding constraints to weights. To obtain constraints for wrap-translation invariance, types

of distance between x;'s must be divided into two categories, the inner distance and the
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outer distance. The inner distance |k—j is the euclidean distance between two points. The
outer distance is defined as |n— k+ |, where n is the size of an input. For wrap-translation
invariant learning, weights corresponding to wrap-translated positions should be equal as
follows[18].

Win = War-1= Win—k+j (6)
Thus, the new learning rule for wrap-translation invariance is given by (7).

hi= sz Wi u% % et Wino i wx i 8) (7

Since all weights in wrap-translated positions have the same values, all the combinations
of two pixels having the same inner and outer distances are added beforehand and the
cumulative value can be represented by a single input node of the second-order neural
network. This feature, summation of all the combinations for given relative position, is called
SOP (Summation Of Products) or second-order feature[18,19,20]. Using second order features,
we can obtain the wrap-translation invariant representations of the wavelet transformed
subimages. The second order neural network using second-order features was used to solve

the translation problem of the discrete 2D-WT.

4. Experimental Results

Experiments were performed using the images which have a pattern with various
positions. Patterns within images composed of four kinds airplanes. 20 images per each
airplane were used for experiments. Figure 3 shows the airplanes within images. The images

were digitized (8 bits grey-level) using a scanner and normalized to 128 x128.

A4 44

Figure 3. Airplanes used in the experiments

The proposed method consists of two stages, the decomposition stage and the

recognition stage. Figure 4 shows the block diagram of the proposed system.
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Figure 4. block diagram of the proposed system

In the decomposition stage, original 128 <128 image is decomposed with the discrete
2D-WT into four 64x64 subimages. The 12 coefficients of the impulse response #(n) of
the filter H is given by Table 1. The impulse response of the G is obtained by equation (8).

<Table 1> Filter coefficients used in the wavelet transform

n| Mn)!| ni{ h(n)
0 | 05421 6 | 0.012
1 0307 | 7 {-0.013
2 {-0.035| 8 | 0.006
3 1-0.078| 9 | 0.006
4 10.023 | 10]-0.003
5 1-0.030| 11 |-0.002

The four subimages of each image can be translated with possible wrap around
according to the positions of an airplane within an image and are also grey level images.
Pixel connectivity is not critical in current experiments. Thus, grey level subimages are
converted into binary images using 3x3 gradient operator[2]1]. Four binary images called the
edge map are obtained after the operation. But they still have translation variation. The four
edge maps should be feed into the second-order neural network to solve the translation with
possible wrap around.

The recognition stage consists of the second-order feature extractor and the Multilayer

Perceptron (MLP) trained by EBP(Error Backpropagation). Generally, second-order neural

-30-



A Solution to translation of the two dimensional wavelet transform - - -

networks are a form of preprocessing for the standard backpropagation neural networks that
use geometrically motivated nonlinear combination of image pixels to achieve invariant pattern
recognition feature spaces[20]. Thus, the proposed MLP using second-order features defined
by equation (7) is also a second-order neural network. Table 2 shows the numbers of nodes
of the proposed second-order neural network.

<Table 2> The number of nodes of the proposed second-order neural network

input hidden output
8192 10 4
size of number of
Randomly selected )
the cumulated vector output categories

In the recognition stage, the second-order features of the four edge maps are
extracted respectively. A 2x64x64 feature vector per each edge map is generated. Then,
four feature vectors are cumulated into the one vector by adding the same dimensions. The
cumulated vector is the actual inputs of the neural network. The processing examples are
shown in Figure 5.

The recognition results in Table 3 show that the proposed second-order neural network
recognizes all 80 images correctly. The results showed that the second-order features are a
good invariant representation of the wavelet transform. Thus, the proposed method makes it

possible to use the wavelet transforms to the pattern recognition directly.
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Figure 5. An Example of processing steps
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<Table 3> The results of the experiments

airplane 1|airplane 2|airplane 3|airplane 4

number of
correct 20720 20/20 20/20 20/20

recognitions
recognition rates | 100% 100% 100% 100%

5. Conclusion

The discrete 2D-WT can be widely used for image processing application due to its
capability. However, the discrete 2D-WT transform can not be used for pattern recognition
directly because it is not invariant to translations of patterns. This problem is the major
obstacle to use the wavelet transform to pattern recognitions.

In this paper, a new method was proposed to solve the translation problem of the
discrete 2D-WT. The proposed system uses a second-order neural network without additional
preprocessing. Our system has simpler architecture and can be implemented easily than the
existing methods and can be applied to pattern recognitions regardless of sizes and types of
images. The experimental results shows the method based on the second-order neural network

is a good solution for the translation problem of the discrete 2D-WT.
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