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1. Introduction

Game theory is the study of multi-person decision making in strategic situations.
A crucial feature of many strategic situations is that people interact repeatedly over
time, not just once. For example, Korean Airline and American Airline compete for

business every day, principals try to induce agents’ full effort, and suppliers and
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buyers make deals repeatedly, and so on. People may behave quite differently
toward those with whom they would expect to have a long term relationship,
compared to their behavior toward those whom they expect to have a short-term
interactions. To capture this notion of ongoing interactions, the repeated game
model is devised. In reality, the strategic situations players face change over time.
The basic model of repeated play abstracts from this situations, and focuses just on
the effect of repetition. In this introductory paper, we confined ourselves to the
study of repeated play when players’ past moves are perfectly monitored. We
organize this paper as follows. To motivate our understanding on repeated play,
we review some examples in section 2. In section 3, we introduce a general model
of repeated play. In section 4, we present the well known Folk Theorems, and
sketched the proof of those theorems.

Lastly, we make some comments on the variations and strengthenings of Perfect

monitoring folk theorems.

I. Some Examples

2.1 Example 1: Prisoner’s Dilemma Game

To motivate the study of repeated games, we begin with a well-known example,

the repeated Prisoner’s Dilemma game in Table 1.

Table 1

Player 2
C D
Player 1 C 1,1 -1,1
D 2,1 0,0
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Introduction to Repeated Games with Perfect Monitoring 3

Here, C is a cooperative move, and D is a move of defection. The unique Nash
equilibrium is (D,D) when the game is played just once. As we know, this Nash
equilibrium is Pareto inferior, while (Z,C) is a Pareto superior. A pareto superior
outcome (C,C) may be voluntarily elicited when the game is infinitely repeated.
Let's consider that players 1 and 2 expect to play the game repeatedly at time
t=0,1,2,.... For example, suppose that the number of times that the game will be
played is a random variable, which is unknown to the players until the game
ends, and that the random stopping time is a geometric distribution with expected
value 100: the probability of play continuing for exactly k rounds is (0.99)* x 0.01.
In this repeated game, if both players do the generous moves(C,C) forever, then
each player will get an expected total future payoff of 500: Tim"
(0.99")(0.01)5k=500. On the contrary, if both players play the noncooperative
moves(D,D), then each player will get an expected future payoff of 100: ="
(0.99")(0.01)k =100. We will present the following proposition with a loose sketch

of proof.

Proposition 1 A pareto optimal outcome(C,C) may be elicited in every period
if the players follow "grim trigger" strategies:

I. Play C in every period unless someone plays D, in which case go to IL

II. Play D forever.

Proof. If both players follow these strategies, then, at any time in the game each
player will get an expected total future payoff of 500(=Ek-1°°(0.99"'1)(0.01)5k), SO
long as no one has deviated. But, If either player I deviated from these strategies
and choose defection(D) on particular day, then her expected total future payoff
from this day onward would be 105(=6+2k-2°°(0.99k 7(0.01)k). What if at some time
t, D has already been played. Then, if player j will play C instead of playing D,
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her expected total future payoff is 99(=0+3k=2"(0.99"")(0.01)k), which is less than
her expected total future 100 if she doesn’t deviate from playing D. So D is

definitely optimal.

2.2 Example 2: Repeating the Game Twice.

The second example we consider is the following game, represented as in Table 2.

Player 1

We repeated the above game twice with a discount factor &. Player i's payoff

for the entire repeated game is:

Table 2
Player 2
Left Middle Right
Top 0,0 34 6,0
Middle 43 0,0 0,0
Bottom 0,6 0,0 55

Ui(fa',a’})= Ui(a")+ 8 Ui(a?)

where a'=period 1's strategy profile, a*=period 2's strategy profile.

If we play the game just once, the Nash Equilibria will be {Middle ,Left}, {Top,
Middle} and {(3/7)Top +(4/7)Middle, (3/7)Left+(4/7)Middle}. In this twice repeated

game, we can construct the following equilibrium strategy(l and II) for §>7/9:

I. Play {Bottom ,Right} in the first period, and {Middle ,(Left} in the second

period.

~110 -




Introduction to Repeated Games with Perfect Monitoring 5

I If either player deviates in the first period, play the mixed strategy game

equilibrium in the second period.

Cheating in the first period incurs a penalty of at least 9/7 in the second period.
The present net gain of deviating from equilibrium is 1, which is greater than a

penalty of 9/7 in the second period if §>7/9. In this finitely repeated game, a

stage NE is required in the last period.

. A General Model of Infinitely Repeated Games

The following defines an infinitely repeated simultaneous move games.

¢ Players: a finite set I = {1,2,...,i}.
®Let G be a stage strategic form game with action sets A;..,A;, payoff functions
Ui : A—R, where A=A X ... X A;
eLlet G* be the infinitely repeated version of G played at t=01,2,.. where
players discount at § and observe all previous actions.
e A history is H'=(a’,..,a""}, where a'€A for i=0,...t-1.

¢ A strategy is sy : H'>A,, Here A; could be the set of mixed actions.

¢ Average payoffs for I are:
Ui(sisi)=(1- 8 ) Zmo” 8 "Ui(ayas), here ai€A;, ai€A;

The question we are very interested in is what possible average payoff could be
obtained from different equilibria in the game when discount factor is sufficiently
large. That is, what might be happened in equilibrium when players are patient.

We present some facts and a definition of min-max payoff before the wellknown

general feasibility theorem called as Folk Theorem:
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Fact 1 (Feasibility) If payoffs vector v=(v1,V2..vi) is in a Nash equilibrium, then
v is an element of convex hull of V, where V=convex hull{(x1,x2,...,x1): 3 aEA with

Ui(a)=xi}.
Definition 1 Player i's min-max payoff is defined as follows
v i=min,.max 4iUi( 54 4-i)

Fact 2 (Individual Rationality) In any Nash equilibrium, player i must receive at

least min-max payoff u;

Proof. In a static equilibrium a, ai is a best response to ¢., which implies
that Ui(ay @) is no less than the min-max payoff »; Nower consider a Nash
equilibrium ¢ (s40-) in a repeated game. Then let ,+ be the strategy of playing a
static best-response to ,. in each period. Then (,i,,.) will give player I a payoff

of min-max value v; Thus playing ,i must give at least this much.

IV. The General Feasibility Theorem

The general intuition that we take from in the preceding examples is that almost
any feasible payoff allocation above the min-max security level can be realized in
an equilibrium of the repeated game when players are sufficiently patient. That is,
the feasible payoff allocation in equilibria of a standard repeated game may
generally coincide with the payoff that are feasible in the corresponding one-round

game with contracts. In the game theory literature, these feasibility theorems have
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been referred to as Folk Theorem because some weak feasibility theorems are
understood and believed in an oral folk tradition before any rigorous statements

were published. We first state the Nash Folk theorem with a brief sketch of proof.

Theorem 1 (Nash Folk Theorem) If payoffs vector v=(vi,v3,..v1) is feasible

and strictly individually rational, then there exists a §1<1 such that for all §>¢;,

there is a Nash Equilibrium of G%(8) with average payoffs v.

Proof. Assume that there exists a profile a=(a1,a,...,a)) such that Ui(a)=v; for all i.
Let m; be the min-max strategy profile of players other than player i holding him
to his min-max payoff »; and write m; for player i's best response to m,. Now

construct the following equilibrium:
I. Play a profile a=(aj,ay,....a1) as long as no one deviates.
II. If some player j deviates, players other than j plays min-max strategy

profile m; against player j thereafter.

If any player i plays this strategy, he gets vi. If he deviates in some period t,

the most average payoff v4 that player i could get is:
(1-8)[vit s vit..*+ & vt di™+ g My 48y it..]
where v;""=supremum, Uj(a).
Following the suggested strategy will be optimal if vi>ve, which implies the

following inequality.

[8/(1-8))(vi- vi) 2(vi™- v))
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As §—1, the ratio & /(1-8)—o0, so we simply pick &1=maxi(vi" - »i)/ (Vi-0i).
Q.E.D.

This Nash folk theorem says that any feasible payoff vector can be supported as
a Nash equilibrium when players are sufficiently patient. But one caveat in
applying Nash equilibrium as a solution concept remains. That is because this
solution concept requires to specify an implausible punishment scheme for players
who are not punished. For example, if player j participate in the punishment
scheme against player i who deviates, then he should follow the min-max strategy
profile m.; cooperatively, which will hurt him a lot. Fudenberg and Maskin (1986)
devised the following folk theorem to avoid this probleml):

Theorem 2 (Folk Theorem)

Let V' be the set of feasible and strictly individually rational payoffs. Assume
that dim V'=L. Then any payoff vector (vi,va..vi)EV’, there exists a 1, such that
for any §>41, there is a subgame perfect equilibrium of G™(&) with average

payoffs (vi,va,...v1).

Proof. Firstly fix a payoff vector (vi,va,..vi)EV'". For convenience, we assume
that there exists some profile a=(a1,a,,...a)) €A, such that Uj(a)=v; for all i. To prove
the above theorem, we construct a subgame perfect equilibrium(SPE) of achieving a
fixed payoff vector v=(vy,vy..vi). The key to the proof is find payoffs that allows
us to reward all agents except i who are participating in the punishment phase
when i deviates and has to be min-maxed for some length of time. To construct a

SPE, we set up the following things.

1) Rubinstein (1979) proved a general folk theorem for subgame perfect equilibria of standard
repeated games with the overtaking criterion. With discounted average payoff criterion,
Fudenberg and Maskin (1986) proved a general feasibility theorem for subgame-perfect
equilibria of standard repeated games.
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« Choose v’ EInterior(V') such that vi/'<v; for all i.

» Choose T such that max,Ui(a) + T »; < min,Uij(a) + Tv{

+ Choose ¢>0 such that for each i, vi(¢) = ('t e, vid'te Vi vin'te, . ,vite)
which is supported by the profile a'€ A.

+ Let m' be the profile that min-maxes i, so that Ui(m") = o
We construct the following strategies for i=1,2,...I, which is a SPE .

Phase 1. Each player i plays ai so long as no one deviates from acA. If some
player j alone deviates, go to punishment phase II;.

Phase Il Play m' for T periods, then go to pahse IIl; if no one deviates. If k
deviates. restart Ily.

Phase III. Play the reward profile a for players other than j so long as no one

deviates. If k deviates, go to IL.

Note that these strategies involve both punishments (the stick) and rewards(the
carrot). Now we are in a position that these strategies are a SPE using the
one-shot deviation principle. To do this, We will check for each of different

subgames.
Subgame 1. Compare i's payoff playing the strategy with his payoff of deviating:

player i follows the suggested strategy : (1- 8 )[vit+ § vi+..] = vi

player i deviates : (1-8)[vi™+ 8 vit.+ 8 v+ 8" vi+..]

We can pick some § such that v; > (1-8)[vi™+ 8 pi+..+8 v it 8 " vi+.].
Subgame II.. (suppose that there are T'< T periods left); this is the punishment

phase against player i.
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player i follows strategy : (1-6T) vi+ 8w
player I deviates :(1-8)oi + 8[(1-0N v + 6"v]

Subgame IIj. (suppose that there are T'< T periods left); this is the punishment
phase against j.

palyer i follows the suggested strategy : (1- § T)Uym) + 8T(vite)
player i deviates C(1-8W™ + §(1-8T wi + 8T

Subgame III;, III;; we will consider player i's payoff.
player i follows strategy Y

layer i deviates S-S 4+ 5(1-8 0w + 8TV
play

We have presented both the least payoff player i could get if he follows the
strategy and the most payoff he could get if he deviates. We can pick some ¢
such that for §>4,, it is best for him to follow the strategy for every subgame
rather than deviating.

QED.

Notice that this perfect folk theorem requires an assumption that dim V'=1. This
assumption implies that any player i can be singled out when he deviates from
equilibrium. The following example shows that no individual can be punished

without punishing everybody:

Example: There are three players; Player 1 is a column player, Player 2 is row

player, and player 3 chooses the matrix.
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matrix A matrix B
A B A B
11,1 0,00 A 0,0,0 0,00
B 00,0 00,0 B 0,0,0 1,11

In this game the min-max level is zero 0. To min-max some player i, the other
two players j and k need to mis-coordinate . The set of feasible and individually

rational payoffs is: V'={(v, v, v):vE[0,1]}.
Claim. there is no SPE of G™ with average payoff less than 1/4.

Proof. Fix &, and let x = infimum{v : (v, v, v) is a SPE payoff}. The first
thing we show is that if (v, v, v) is an SPE, then v > (1-8)(1/4) + 4 x. To show
this, we denote that (o1, 02 o3) is the first period mixed strategies used in a
SPE with payoff v. Then there must exist either two players with ¢i(A) > 1/2 or
two players ¢i(B) > 1/2. Take the former case, and suppose that ¢i(A), 62A) >
1/2.

Suppose that player 3 plays A in the first period and then follows his
equilibrium strategy. Then his payoff from this will be at least (1-6)(1/4) +4éx,
given that continuous play will be an SPE. Since this deviation is unprofitable, the
initial claim holds. That is, x = infimumy & spg v > (1-8)(1/4) +48x, which
implies that x > 1/4. Basically, the problem is that no individual can be punished
for deviating without punishing everyone. So there is no way of reward the

punishers. QE.D.
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V. Some comments

We conclude this introductory paper of repeated play with perfect monitoring. Of
course, there are ongoing researches on 'repeated play with imperfect public
monitoring”, and on repeated play with imperfect private monitoring". Here we
willconfine ourselves to making a brief comments on several variations and
strengthenings of the perfect monitoring folk theorem. Dutta and Smith (1994) relax
the assumption of dim V'=I (full dimensionality). They show that it is always
possible to single out individuals for punishment in case that no two players have
payoffs that are transformations of each other. Benoit and Krishna (1986) prove a
folk theorem for finitely repeated game. Clearly, we know that this can’t be done
in the prisoner's dilemma where backward induction says that (D, D) will be
played in every period. In this finitely repeated game, for folk theorem to hold,
the stage game must have multiple Nash equilibria to allow for rewards and
punishments towards the end of the game. Kreps, Milgrom, Roberts, and Wilson
(1982) considered a finitely repeated Prisoner’s dilemma game with the sum of
payoffs criterion. In their model, they assumed that there is an initial doubt of
player 2's rationality. That is, there is a small probability &such that player 2 is
not really rational but is instead a machine that always plays tit-for-tat. In that
case, some generous moves can be elicited before the last some rounds. Kandori
(1992) and Ellison (1994) show the folk theorems for games with overlapping
generations and for games where players face a new opponent randomly drawn
form the population in each period respectively. There are also a folk theorem for

games where some players are long run, and others have myopic horizon.
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