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ABSTRACT
This paper discusses numerical performance modeling of fully coupled

continuous-time networks utilizing continuous activation functions, finite input

resistance of neurons, and other parasitic components within the neural system. Both

time-domain performance modeling and static numerical modeling of the networks are

characterized and compared.
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I . introduction

Single-layer feedback neural networks,
also called gradient-type networks, have
recently received widespread attention
in the technical literature ™. Most of
the published results, however, deal
with the discrete-time., discrete-output
networks. The discrete-time networks
represent limit case of continuous-time
continuous

networks which involve

activation functions and change the output
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values continuously rather than discretely.
Some of the postulates regarding both
the convergence and performance of
discrete-time networks remain valid for
their continuous-time counterparts. There
are also numerous differing aspects in
both types of networks. These aspects
are discussed in this paper.

I, Description of Continuous-time
Actual Neural Networks

The model of a fully coupled neural
system consists of n neurons each
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mapping the input voltage u; of the i-th

neuron into the output voltage v;

through the activation function f(u)
which is the common static voltage
characteristic(VTC) of the
neuron. The common choice is the

transfer

so-called sigmoidal function

vi=Ru)=[1+exp(—Au)] ",

The neurons’ gain value A is assumed to
be finite. Conductance w; connects the

output of j-th neuron to the input of
the i-th
conductance and capacitance are of

neuron. The i-th input

non-zero values, and equal to g; Ci;.

respectively.
The network is described by following

equation
2t — W)+ i Gu(d) (1a)
2= Au() (1b)

where, using customary notation, we have

_CEdmg[ CI’ C2v Y Cn]

G=diag] 3w+ &,

}21 w2i+g2' T glwn/‘_"—gn]

The postulated energy function E(2) for

this system has the following form a0

E(v) = —‘%ﬁ.Wﬂ—Jfﬂ
(2)

+ glcif().;fi_l(Z)dz

The negative gradient vector of the
energy function (2) can be computed as

—VEw=Wor—Gu+i (3)

By comparing (3) with the right hand
side of (la) it can be written as

- vE@w=c-4 (4)

lll. Dynamic Analysis of Continuous—
Time Networks

The vector field method is presented
below as a tool for analysis of gradient-
type neural networks. This method can
capturing the

generate trajectories

transients and equilibrium points in 2"
space. it enables the complete dynamic
solutions for all possible initial
conditions, finite gain values of neurons,
while including parasitic conductances
and capacitances which occur in actual

neural systems.

u',- = %,(l,‘f‘ g%v,"‘c,‘u,’),
(5)
i=1,2, ... ,n

Equation(5) can now be expressed in
the output space as follows

B LD, =12, (®

and used to compute the derivatives

(., d(w), ... ¢ (). As a result,

obtained that
indicates the complete trajectories of the

the vector field is
The components ¢{2) of the

system.
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vector field for single-layer feedback
networks can be explicitly computed as

o Awi—d)
¢) = —c

G, + ’Z"%v,-—- G Y(v)), (D

i=1,2, ... .,n

Components ¢; of the computed vector
determine the motion of the system
output in the direction v;. Approximated
actual displacements of the output are

equal to products ¢;Af.

The approximation for vf“ is

+
vitl=oi+ o)

i = 1, 2. ... . n (8)

where Av; is the vector component of a

displacement-step. It is equal to the

product of the normalized vector

component by a displacement-step

avt=n(g{N)d
I=1.2,....n (9)

where d is a user-selectable displacement-
step, and #n(¢{2)) called normalized

vector field component is defined as

follows
n(¢,~uz>>s——‘”'(£—%—
(B A)
i=1.2,....n (10)

Thus, the length of the sum of the
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vector components of a displacement-
step is equal to the displacement-step.
The stable displacement-step depends
on a system. The output values of the
Hopfield networks are in the region
[0.1). The reasonable displacement-step
for the stable system can be chosen as
d=0.01. Thus, the system moves by
0.01 each iteration.

Case Study

A 2-bit A/D converter representing a
class of optimization, or gradient-type
networks'*®, is selected as a case study
to test the method.

equation(1) describing the converter are

The state space

Colio = x—0.5—2v|—(g0—2)u0 (11)
C[dl 2x—2—2vo—(gl—2)u|

Where x is the analog voltage value to

be converted to the binary reprsentation
v=[vy,v)". Equation (11) can be

rearranged with form (7) to follow form

. A
Vo= 'C;.o(vo— 0(2))[1-0.5—201

(&= 2(y=5))] 12)

. A
vl=—Ell-(vl-—vf)[2x—2—200

[
l_Ul

—(81_2)111( )]

The normalized vector field of this
system can now be produced for known
values of x, g, Ci, 4; (i=1,2). Fig. 1
provides a comparison of the vector field
analysis with the actual energy map of
the system for the case x=1.6, A=2,
Ci/Co=1, g=2.5. There is one saddle
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point and two minima indicated by

——]

-0.8624

7,

vector in Fig. la. The actual energy
map with the third therm of energy in
Fig. 1b indicates the direction of 098
movement of output in time. To gain

099

097
more detailed insight into convergence, 0.8616
the energy map near one of the two 096 v
minima v = [0,1] have been expanded
095 486
-O.m__//
Vi NS CC St a s 094 _—/
09 | ‘\\\\</////////// A \ -(.8584 -
NN A i a s 093 —
X BNNNNNN S OSSR
NN A 001 002 003 004 005 006
L I G A AR A
RN EERE S A
06 LAl IS
R RN ¢) macro map for upper left corner
Lrrrt st
R ALY .
V1112227 Fig. 1 Vector field energy maps comparison
N AN _ _
oal 1117207777727 x=16, =2, C/Cy=1. g=2.5
NNV NN
02l 777 ///////////>\\\
/ //////////////>>\ as shown in Fig. lc. It can be seen that
oAl /LSS SIS e _
WY YIP I IIIID the energy minima near the corner is
L LS AL LA LL . . . .
02 04 06 08 indeed within the unity square and very
V0

close to the corner.

In summary, the vector field approach
provides a detailed insight into the
transient behavior and stability
conditions of the network. Although the
method can be graphically illustrated
only for n<3, it can be applied to
networks of any dimensional size.

a) vector field

Iv. Static Numerical Modeling

In contrast to the dynamic analysis
involving time-domain analysis in the
preceding section, here we introduce the
static numerical methods. They are
relaxation algorithm and Newton-Raphson
method. These methods are based on the
b) energy map assumption that the continuous-time

125



Min-Jae, Kang

system stabilizes in space v when the
energy gradient (3) reaches zero.

4.1 Relaxation Algorithm and Convergence

The relaxation algorithm is based on
the contraction mapping theorem. Here
this algorithm 1is applied to solve
equilibrium points for the continuous-
time networks having electronic
components. However, convergence of
the algorithm is limited. this limitation

is presented in section 4.1.2.

4.1.1 Relaxation Algorithm for continuous-time
System

The continuous-time system moves
down its energy surface. Thus, the
system stops moving and becomes stable
when the gradient (3) is zero. Using
this particular property of the network,
the solution for minimum E(v) in the
output space can be written as

YEW=0 (13a)
Wo—Gu+i=10 (13b)

By using the above equation vi can be
expressed as follows

v=f& Blww+i))
i=1,2,....n (14a)

The iterative numerical solution for wv;
can be modeled using the contraction
mapping theorem as follows

7= Byt +i)]

126

i=1.2.....n (14b)

This is a static relaxation algorithm
suitable for numerical calculation of the
stable solutions as opposed to dynamic,
numerical integration related, algorithms
depicting the transients within the
continuous-time network®.

4.1.2 Sufficient Condition for Convergence

of (14)‘
The convergence of (14) to the unique
fixed point is guaranteed by the

sufficient condition

LIS
aU,' n

where K (1 (15)
for each j=1, 2, ..., n and each

component function fi(4). For fi specified

by each equation in (14) we obtain

of{w) _ _offu) du;

v, —  du oy (16)
where
ofkui) _ de M
du; (1+¢ )2

Based on u{v) specified in square
brackets of the right-hand side of (16),
the second derivative of the chain in
(16) can be expressed as

Ju; _ wy

Combining (16) and (17) allows the
rewriting of (15) as follows
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Ae wi|, 1

— T (= (18)
(1+e A Y2 Gi|'n

The condition (18) can be further

simplified by noting that it is equivalent

to

-’%[l+(2—n/1 ¢

2 l)e Ry '”"'] >0
(19a)

The binomial in brckets of the left-hand
side of the inequality (19a) should
remain positive for all values of the

variable exp( —Aw%;). This is fulfilled

when the quadratic equation equating it

to zero has no real roots. The above
condition translates to
1 w; [\*

1—4(2—7:,1—?) 20 (19b)

It is obvious that (19b) is fulfilled for
—2 < 2—nal—’é¥| <2 (20a)

The above condition can be briefly
expressed as

G

Wy

i< 4

” (21b)

Thus, the convergence of the relaxation
algorithm (14b) to the unique fixed
point of (14a) is guaranteed by the
sufficient condition

. G;
A< min ;o3 ... {‘4‘ . '__;
i=1,2,....m n Wy

by

} (22)

It can be seen that the condition (22)

for the network with fixed conductances
wy, G; imposes bounds on the highest

values of neruons’ gain.

Case Study

The stability of the numerical solution
using the relaxation algorithm (14b) has
been tested using the same circuit as
before.

Fig. 2 shows the fixed point iterations
for x=1.3. The numerical solution has
been shown in the output space using
the background of energy contours given
(without the third term of (2)) as

E(y) = 2uw,+ % +2v,— x(vy + 2v,)
(23)

It should be noted that the numerical
relaxation algoritm neither operates on
the energy surface, nor in time, and the
contours of E(x) are provided solely for
visualizing real transients in actual
continuous-time neural network. It can
be noticed that there are two minima of

E®» at 2= [0,1]' or 2 = [1,0)".

There 1is also a saddle point at

v = [.3 .4} which sivides the bimodal
energy surface.

Fig. 2a illustrates the stable relaxation
algorithm applied for 4 =3.5. Increase of
A to 5 or above brings instability of the
relaxation modeling as shown is Fig. 2b.
It should be noted that the values of
maximum A ensuring numerical
convergence and computed from sufficient
condition (22) are much smaller than
those at which stable solutions could

still be actually computed.
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a) stable solution for A =3.5.

b) unstable solution for A =5,

Fig. 2 Relaxation Algorithm for
network x=1.3.

In summary, a fixed point relaxation
algorithm has the potential of finding
stable solutions of the actual continuous-
feedback
discussed. The stability of the numerical

time single-layer network
solution using this method, however, is
severely restricted. Sufficient condition
(22) for numerical stability of the

algorithm would limit its application to
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networks with relatively low gain
neurons. In addition, the stable solution
obtained using iterations as in (14b),
although mathematically correct, may
not be identical to the solution of the
dynamic system, even with the same
starting point. Saddle points are among
the solution: they are not, however,

equilibrium points of the networks.

4.2 Newton-Raphson Method of Energy

Function Minimization

Below, another static algorithm which
is based on the Newton-Raphson
approach is presented. Compared to the
relaxation algorithm, this method can be
used for any size network to find the
stationary point, or solution of the
equation VE(p)=0.

Formally, given the point x to be the
current approximation of the stationary
point, the next linear apporximation
point can be obtained as

© =~ KD F ) (24)

where F(u) is the energy gradient
expressed in input u space.

}2‘ WiRu;) — Gy + 1)

K = (25)
]g u’rﬂjﬂui) - Gnun + in
Sh O _h
ofy ofi 0fn-1
Kah=| o Hes
afn-l afn—l s afn—l
afn—l afl afn—l
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This method always converges to a
stable solution, dependent strongly.

however, on initial point %;. The

different initial point can cause a
possibility for this method to diverge
rather than converge to the true
stationary point.

Case Study

The 2-bit A/D converter is selected to
test this method for finding stationary
points. Equation (24) for the 2-bit A/D
converter is

k+1 & &
[ ] = [ 8]t | pid)

u; F(uf)
(27)
where
= 2—g —2A(v;—v))
T —24(vy— f) 2—g ]
Huo) = _2111+x_0.5_(g0_2)u0
F(u,) = —200+2x—2—(g1—2)u|

The Newton-Raphson method iterations
for x=1.3 and A=5 contrast the
relaxation algorithm which fails to
converge for A =5, This method finds all
stationary points, two minima and a
saddle point as shown in Fig. 3.
However, the different initial point
causes diverging rather than converging
to one of the minima.’

In summary, even though this method
is difficult of its sensitivity to the
initial condition and because it costs
much to calculate the inverse of

Jacobian matrix every iteration, the
method can be applied to large actual
networks.

Vi
09

7

08
07
06
05
04
03
02

01 \
1\

Fig. 3 Newton-Raphson Method for
2-bit A/D converter, x=1.3
and A=5

02 04 06 08 vyg

V. Concluding Remarks

The main focus of this paper had been
the dynamics and static numerical
modeling of actual Hopfield-type
networks. The vector field method has
been presented for dynamics analysis. and
it has been compared with numerical
relaxation formulas and the Newton-
Raphson method. It has been shown
that the relaxation algorithm may not
often guarantee numerical convergence
while the vector field method does. So,
vector field method has been considered
as a reliable tool for continuous-time

neural network analysis.
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