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I . Introduction

Knowledge and Interactive knowledge are key elements in Economic theory. For example in Game
theory, the rationality of agents in the game is a common knowledge among agents. Loosely
speaking, The common knowledge is that players know that their opponents know that they know ad
infinitum. The idea of common knowledge is a useful tool for understanding the information structure
on which the equilibrium depends.

In chapter 1, we review the basic measure theoretic concept by following the standard text book on
probability theory!). In chapter 2, Given the knowledge of measure theory, we define the knowledge
function and examine several properties of knowledge function. Equipped with this, we demonstrate
Aumann(1976)’s famous result of “Impossibility of agreeing to disagree.” Lastly, we demonstrate the

paper "Common Knowledge of an Aggregate of expectation"(Niellson, Brandenburger, Geanakoplos,

* Professor, Dept. of Economics, Cheju National University
1) There are many text books on measure theory such as Grimmet and

Stirzaker(1992)
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McKelvey and Page(1990). This paper says that public observation of an aggregate of individual

v

expectation such as prices leads to consensus.

I. Algebras and o - algebra

2.1 Algebras

Definition 1: let X be a space. A collection A of subsets of X is an algebra on X, if and only if it

satisfies all the following properties:

1. Both X and null set belong to 2.
2. ForallA€ea A°ea
3. ForallA,Bea AYBe g

Proposition 1 : Let X be a space, A an algebra on X, and A, B two subsets of X that belong to 4.
Then,

1. A1 Beg
2. A\Beg
3. AABea

Proof :
1. A1 B (A° Y BY)* € Asince A, B € 2and 4 is an algebra.

2. A\B=41 B° € A by the previous item.
3. AAB=(A4\B) Y(B\4) by the previous item.

It is obvious that any finite union of elements of algebra is an element of an algebra. The same story

holds for any finite intersection of elements of an algebra.
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Literally saying, the collection 2 of subsets of X is just the set. In this case each element of 4 is some
subset of X. Given a space X, the set consisting of subsets of X as elements of it could be algebra if
it satisfies above properties given in definition 1. Let’s consider some collection A4 = {X, null set}.
The collection A is an algebra because it satisfies the properties of algebra. Let X =1{1,2,3,4}. The
collection A = {{1,2,3,4},{null set},{1},{2.3,4}}is an algebra because: 1. the whole set X and null set
belong to 4, 2. for any element in A, the complement of A is in the collection A, and 3. any union of
two elements in the collection A belongs to the collection A. Obviously the power set of all subsets

of X is an algebra.

Proposition 2 : Let X be a space, and let (A.)uer be a non-empty collection of algebras on X.

Then the collection I ser Aiisan algebra.

Proof :

1. Both X and null set belong to any algebra concerned, so they belong to the intersection of
algebras.

2. Suppose A belongs to the intersection of algebra. Then A belong to any algebra concerned.
This means that the complement of A belongs to any algebra by the property of algebra.
Therefore the complement of A belongs to the intersection of algebra.

3. Suppose A and B belong to the intersection of algebras concerned. Then A and B belong to
any algebra concerned. Therefore A union B belong to any algebra, which implies that A

union B is an element of the intersection of algebras.

Proposition 3 : Let X be a space and let M be a collection of subsets of X. Let F be the collection

of all the algebras on X that contains M. Then,

1. F is not a null set

2. The intersection of all the elements of F is an algebra that contains M.

Proof :

1. The power set of all subsets of X belongs to F since it is an algebra containing M. So F is not
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a null set.
2. The intersection of all the algebras in F is an algebra by Proposition 2. Since each one of

them contains M, so does the intersection.

Definition 2 : Let X be a space, and let M be a collection of subsets of X. The intersection of all the
algebras on X that contains M is called the algebra generated by M, it is denoted by AM).

Above Definition 2 says that 4(M) is the smallest algebra among the algebras that contains M.

Proposition 4 : Let X be a space. M a collection of subsets of X, and A4 an algebra that contains M.
Then 2=A(M) if and only if 4 is contained in every algebra that contains M.

Proof : Suppose .2=AM). Definition 2 says that A(M) is contained in every algebra that contains M.
So does A. Conversely suppose that 4 is contained in any algebra containing M. So it is obvious that

AS AM). By Definition of A(M), AM)< 1.

Proposition 5 : Let M and K be two collections of subsets of a space of X. F ME K S (M), then
AM)=A(K).

Proof : A(K)S A(M) since A(M) is an algebra that contains K and A(K) is the smallest algebra
containing K by definition of A(K). A(M)< A(K) since A(K) contains M and _#(M) is the smallest

algebra containing M.

Above proposition states that if 4(M) contains K a collection of subsets of X bigger than M, then
A(K) the smallest algebra generated by K is Just the algebra a(M).

2.2 o — Algebras

We are now stating the stronger concept than the algebra.
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Definition 3 : Let X be a space. A collection 4 of subset of X is a o —algeray X, if and only
if it satisfies all the following properties:

1. Both X and null set belong to 4
2. For all A € A, the complement of A belongs to 4

3. For all sequences (4.) 0 of A, U 4, belongs to A.

It should be clear that every sigma algebra is an algebra, since every union of two sets A and B can be
written as a countable union (AU BUPUP...)  Consider the following example of showing that

not all algebras are sigma algebras. Let X = {1, 2, 3, -}, and let ﬂ={A c X : A s finite or the
complement of A is finite}. It is easy to show that 4 is an algebra. Both X and null set are in 4 since
null set is finite. Let A, B € 4. If both A and B are finite, then so is AU B . Otherwise at least one
of them is infinite, but its complement is finite. Let such a set be A. Then the complement of AU B
is a subset of the complement of A which is finite. So the complement of AU Bis finite and
therefore is in 4. The complement of A is in A because the complement of it is A and A is in 4. On
the other hand A is not a sigma algebra. Indeed each even number is in 2 but the union of all of the

even numbers is not in 4.

All of the previous results for algebra hold for sigma algebra if we substitute sigma algebra for
algebra in the statements concerning algebra. For example: 1. the intersection of sigma algebra is
sigma algebra, 2 The intersection of all the sigma algebras on X that contains some collection M is

called the smallest sigma algebra generated by M.

[II. The impossibility of Agreeing to Disagree

Given the previous knowledge on sigma algebra, we are in a position to demonstrate
Aumann(1976)’s famous result of “Impossibility of agreeing to disagree.” First we introduce

information partition for each agent.
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Let I be a finite set of agents. Let ( QZ,u ) be a probability space where 1. Q is a countable set of

states. 2. X is a sigma algebra of events. 3. & is probability measure on X .

For each i€], Hils an information partition of 2 into measurable sets of positive measure. The
elements of II; are disjoint. For @ € Q2 I1;(w) denotes the element of the partition II; that
contains W. For W, W €I1,(w) , II,(w) = IL(W) 1 have avclear understanding, consider
following example. SupposeQ = {1,2,3,4,5,6,7,8,9} ; there are nine possible states in the world.
And let the information partition for agent A be I1,={{1,2,3}, {4,5},16,7,8}, {9}}. For
w=4,w=S5I1,(w=4)=I1,(w=5) = 4.5} . We denote by Fithe sigma algebra generated
by the information partition I, .

Proposition 1 : £ is the set of all unions of elements of I1;

Proof : Denote by M the set of all unions of elements of 11, First we need to show that M is a
subset of ¥ Note that Fiis the intersection of all the sigma algebras that contains Hi. But any
sigma algebra containing I-Iimust contain all the countable union of elements of ni. SoMisa
subset of £ . Next we show that Fiis a subset of M. It is enough to show that M is itself a sigma
algebra containingni. To see this, First note that £ belongs to M since it is the union of all the
elements of Hi. Also null set is the element of M since it is the empty union. Second, if A BE M,
union of A and B belongs to M since it is the union of elements of Hi. Lastly, let A€ M, then the
complement of A consists of elements of ni, not the element of A. This implies that the

complement of A is some union of elements of L1, |

Above proposition says that given the information partition for each agent, we can form the sigma

algebra by simply considering the set of all unions of elements of the information partition.
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Definition 1 : We say that agent i knows event at the state w if IL,(W) cE.

How do we interpret this? To interpret this, let Q and 14 be given as above. And suppos;e the
information partition for the agent B I, = {{1.2} .{3,4,5},{6,7}, {7.8,9}} . Consider the event

E={,234} Suppose that the true state is 2. In this case agent A knows that the true state is
either 1, 2, or 3: Agent A knows event E since event {1, 2, 3} is a subset of E. Does agent B know
event E? Yes. Given the true state is 2, Agent B knows that the true state is 1 or 2. So agent B knows
the event E since {1,2} is a subset of E. Consider the event F={2,3,4,5}. Does agent A know the
event F? He does not know the event F since {1,2,3} is not a subset of F. The same story holds with
agent B. Does A know that B knows E? No! Given the true state w=2, agent A knows that the true
state is in {1, 2, 3}. In this case he knows that either (1) agent B knows that the true state is {1, 2}; or
(2) agent B knows the true state is in {3, 4, 5}. In case (1), agent B does know E, but in case (2) agent
B does not know E.

Definition 2 : Let K(E) be the event “ i knows E” That Iis

K. (E)={weQ:TI,(w)c E}

Proposition 2 : Agent i knows event E at w if and only if there exists 4 € Fisuch that

weAcCE

Proo f: W€ K.(E) implies that there exists IT;(W) which is a subset of E. IT;(W) s the set A
we are looking for since W€ I1,(W) € F;  Conversely assume that W€ A E for some

A€F, A is a union of elements of I, gince A€ F;. Since we A, we must have

IT,(w) € 4 Therefore I1,(w) CE,and W€ K.(E),

Proposition 3 : Let E be an event, and let M={ AeF,. AC E} be the set of F; measurable

subsets of E. Then K (E)=\ n 4.
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Proof : Let WE K,.(E)_ Then by proposition 2, there exists 4 € F:‘such that W€ AC E  This
means that W€ A € M and consequently WEJ ,,, A Conversely assume WE\J ;s A Then

thereis 4 € F, suchthatwe 4 C E.BypropositionZ, we K, (E).
Above proposition 3 implies that K,(E) is an element of £ and a subset of E.
Proposition 4 : Forallevents £ € £, K;(E) =g i and only if £ € F;

Proof: Suppose K,(E) =g. K(E) belongs to F: So does E. Conversely if Ee F, , Then E
belongs to M since E is a subset of itself and belongs to E By proposition 3 Ec K,(E) . And we

know that K;(E) belongs to F, and a subset of E. K;(E) =E.

Proposition5 : For all sequences of events (£, )21, K; (N, E, ) = N K (E,)

Using the proposition 3, we can prove above claim 5. It is also obvious that K;(£) is a subset of
K;(F) if E and F are measurable and E is a subset of F.

Until now we have examined several properties of knowledge function given the sigma algebra

generated by the information partition. We extend Definition 1 of the knowledge of each agent to

have the Definition of common knowledge.

Definition 3 : An event of E is common knowledge at W€ € if there exists an event 4 € F;

forall i€ I suchthatwe ACE
Suppose there are two agents A and B in the economy. Then we can say an event E is common

knowledge at some true state if player A knows E, player B knows E , player A knows that B knows

E, player B knows that A knows E, and so on indefinitely. This loose statement for common
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knowledge can be rigorously stated in mathematical terms. Following Monderer and Samet (1989),

given an event E, we define the following events recursively:

E°=E
E"= nieNKi(E"-l)

And C(E) =0 E™

Proposition 6(Monder and Samet (1989)) : E is common knowledge at w if and only if
we C(E) .

Proof : Assume that E is common knowledge at w. Then by definition of common knowledge, there
exists an event A€ F; g5 al1 i € I such that WE AC E 1t is enough to show that AcC(E).
Propositions 3 and 4 say that A=K,(A)cK,(E) VieN, whish implies
Ac Ny K(E)= E' . Assume that for 21, A< E™ . Then again by propositions 3 and 4,
A=K, (A)cK,(E") Vie N which implies AcnyK(E")= E™  We have proved
inductively that AC E” forall n21. Therefore, Ac O, E "=C(E), Conversely assume
now that W € C(E) . We need to show that there is a common event A€ F; for all i such that
we AC E. We will show that C(E)is such an event we are looking for. Firstly we know
C(E)S E since C(E) S E'cK(E)cE, Lastly we show that CE)eF, foranl i€l
Note that for all #>1 and forall Vie N, C(E)c E™ cK/(E"). By propositions 3 and 5,
we can show that C(E) € Ny K (E")c Ki(Ny E")=K,(C(E)),

We are in a position to demonstrate the main result of this chapter “Aumann’s impossibility of
agreeing to disagree”. We introduce a measurable function with endowed information partition to

follow Aumann’s main theorem.
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Definition 4 : A function / :Q > R g measurable with respect to partition 11;  if for all W» W'

eQ, TLW =TL,(W) inties f(W) = (W)

Proposition 7 : Let *ifor i € /be a collection of numbers, one for each agent, and let
C={weQ:E(f|I W) =x.} pe the event at which the expected value of f conditional on

IT; X Let €= Nien G If C is common knowledge at w, then *i =% forall i, j € [ .

Proof : Assume that C is common knowledge at w among the members of I. Then there €xists an
evet A€F, g a1 such that weAdcC, Note  that

S/ V)W)
EGIIL,)(w) = u(IT1,(w)) , which can be written as

z:»"eﬂ,-(W)E(f l l'I,.)(w'),u(w’) = ZW’EHi(W)f(W)”(W'). This equation can hold when we
substitute A for 11; (W) since A is some union of elements of information partition. Since we have
AC Cand E(f|TLYW) = x, all we C . We obtain the following result:

o E(f | IL)(Wyp(w) = x; (A4) = zweAf(w)/‘(w), which implies that *i = X; for aJ]
iL,jel

Suppose that the agents in the economy exchange their conditional expectation of some random
variable each other given the true state of the economy. If this communication among agents in the

economy is perfect in the sense of common knowledge, then the above proposition says that they can

not agree to disagree.
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IV. Common knowledge of an aggregate of expectation
4.1 The model

Let X : Q —> R be a random variable. For each i € I, let X, : Q — R pe conditional expectation

of X on information partition I1; The value of conditional expectation of X at w is as follows.

E well; (w)X(w' )ﬂ(W’)
X, - H(IT.(w)) ) This equation can be extended as

EXi(w)/J‘(w): ZX(W)u(w)forallAeF,- since A is some union of elements of
weA weA

information partition.

Let JiiR>R goreach i€ Ibea strictly increasing function, and let S iR > R be defined
by F(x,%35000%,) =2, fi(%;)  Here [ is an aggregate of conditional expectations of each

agent. Fix Y € R define the event E={weQ]| f(X,(W),.. X,(W)) = ¥} The following
proposition says that if E is commonly known event among agents, then they can not agree to

disagree: that is, their conditional expectations of some economic variable should be the same.

Proposition 1 : Suppose E is common knowledge at W’ . Then the n conditional expectations of

X at W’ are equal.

Proof: Since E is common knowledge at w" | there exists an event A€F, foraniel such that.

w belongs to A which is a subset of E. Let’s define the conditional expectation of X given the

1
=——2X ,X(Wu(w
common event A as follows. p(A) wea X (WA ) This equation can be written as
T eaXou(w) = T X(Wu(w) = Z X (wu(w), 6}
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Since by assumption f (x,,x, ’---J.)is constant on A, we have
ZoedS (X, (W), X, (WX (W) - X)) =0

By definition of f ,

Lo s Zies [ (X (WX (W) - X)uw)=X_X ,f (X;(WNX (W) - X, ) u(w) =0
Following the same procedure as above , We can also get

ZirZues (X, (WX, (W) - X ) (W) = 0 @
Using (1), we get the following equation for all i € 7 -

Zea i (X )X; (W) = X )W) =0 404 hence

ZinZoue d [ (XWX, (W) = X ) (W) =0 3)
Combining equation (2) and (3) we get

ZierZwes ([i (X (W) = S(XONX, (W) = X, )u(w) = 0

Since fi is strictly monotone, the above equality can be satisfied only if X, (w)=X o for all
i€landall we 4.

The assumption that f is monotone without being additive separable is not sufficient for the above

proposition to hold. To see this, consider the following example

Let Q={w,w,,..w} be the set of states of the world, each with probability 1/5, and let
1={1,2,3,4,5,6} be the set of agents. The agents information partitions are given by

IT, = {{ana}’{wz,wuws}}

II, = {w,w, b {w,,w,,w}}

IT, = {{wlrws}r{w29ws’w4}}

I, = {{w,,w;}, {w,,w,,w,}}

Hy = {{w,,w,},{w,w,,w}}

Iy = {{w,,w}, {w,w,,w,}}.

Consider the random variable X : Q2 —> R given by

X(w)=1ifw= Wi, W, otherwise X (W) =0
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The conditional expectations, X; of the agents are given by

W
X 1 172
X, n
X5
X 4 1/3
Xs a3
Xs 13

w,
173
1/3
1/3
172
172

12

e
172
1/3
173
172
1/3

1/3

W,
1/3
172
1/3
1/3
172

1/3

Ws
1/3
173
172
1/3
1/3

1/2

Consider the function J : R* >R given byf(xl’"-’xs) =0 This function is monotone in the

domain of the possible 5 vectors of expectations given by the above table. It is common knowledge

that S (X15--Xs) =0 _still, the conditional expectations are not equal.
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