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Introduction

DEFINITION 1.

Let H be a vector space over K(K=R or c)
A mapping S:HXH-K is called a
sesquilinear form on H if for all f,g,h€H and

a,bek

1) S(f, ag+bh)=aS(f,g) +bS(f,h)

2) S(af+bg, h)=a*S(f,h) +b*S(g,h) where
* be the complex conjugated.

EXAMPLE 2.

For each positive integer m, let C™ be the
complex vector space of the m-tuples f= (f,,
f2,0f0). 8=(81.8:..8,) .-of complex
numbers with the addtion

f+g= (f,+g,,~-,fm+gm) and multiplication
by a €C

af= (af"."’afm)

If (ajk)j,kzl.z,v--,m is a complex mXm matrix,

m
then S(f,g)=}§l a, - fj‘ - g, for f, geCm

defines a sesquilinear form on C®,

DEFINITION 3.

H be a Hilbert space,

A sesquilinear form S on H is said to be
bounded if there is a ¢20 such that |S(f,g)|<
clfl lgl for all f,g€H,

(x) If TEB(H), then t(f,g) =(Tf,g) defines
a bounded sesquilinear form on H where B (H)
be a set of bounded operator H into H.

THEOREM 4,

Let H be a Hilbert space, If t is a bounded
sesquilinear form on H, then there exists
exactly one TEB(H) such that t(f,g) =(Tf.g)
for all f,g€H and 1Tl =1t]).

(Proof)

For every f€H since [t(f,g)I<Itl 1f] ) gl

the function g —t(f,g) is a continuous linear
functional on H,
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Therefore for each fEH there exists exactly
one fEH

such that t(f,g) =<

The mapping f —f is linear, Let define T by
Ti=f for all f€H.

The operator T is bounded with norm |T |
=sup{I(Tf.g)| : f.geH, 1fl=1gl=1)=sup
(t€.e)1 : f.geH, Lfl=1gl=1=1tl
I T,EBMH) and T,€BH), <T.f.e>=t{.g)=
{T,f,g) for all f,geH, then T,=T,.

DEFINITION 5.

A vector space T is said to be the direct
sum of two subspaces T, and T, if each f€T
has a unique representation f=g+h, g€eT,,
hET, and denoted by T=T,PT,

THEOREM 6.

Let H be a Hilbert space and let T be a
closed subspace of H.

Then H=T@®T*.

(Proof) .

Since H is complete and T is closed, T is
complete. Since T is convex, for every f€H
there is a g €T such that f=g-+h— (%), heTt,

Now we show uniqueness,

Assume that f=g+h=g’+h’ where g,g"€T,
h,h’'€TL,

Then g-g’=h-h’

Since g-g’€T and h-h'€T*, g-g'€TNT+= (0}

Therefore g=g’ and h=h’

(In (%), g is called the orthogonal
projection of f on T)

PROPOSITION 7.
Let H be a pre-Hilbert space and let T, and
If T,@T,:

closed, then T, and T, are closed.

T, be orthogonal subspaces, is

THEOREM 8.
Let H be a pre-Hilbert space and let T, and
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T, be subspaces of H such that T,iT..
Then T,@T.CT.OT:
Particular, if H is a Hilbert space,
then T,®OT;=T.®T,
(Proof)
Let f+g€T,®T,. where f€T,, g€T,
Then there exist sequences (f)€T,, (g)€T,
such that f —f and g —g, f,+gET.@T:
Therefore f+g=Um{f +g )ET.@OT,. Hence
f+geT@T:
Next we will show that T,®T,CT.@T:.
Let f+g€T,®T;
Then there exist sequences (f)ET,, (g)€ET:
such that f —f, g —g and T.@T.€f +g,—f+8.
Therefore f€T,, g€T, and {+g€T,@T;.

Compact operator in
Hilbert space

DEFINITION 9.

Let H, and H, be Hilbert spaces, An
operator T : H,—H, is called a compact if T is
linear and for every bounded subset B of H,,
the closure T (B) is compact,

THEOREM 10.

Let H, and H, be Hilbert spaces and
let T:H,—H, a linear operator,

Then T is compact if and only if it maps
every bounded sequence (fn) in H, onto a
sequence (Tfn) in H, which has a convergent
subsequence,

(Proof)

If T is compact and (f) is bounded, then
the closure of (Tf) in H, is compact and
(Tf) contains a convergent subsequence.

Conversely, assume that every bounded
sequence (fn) contains a subsequence (f )
such that (Tf,) converges in H,.
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Consider any bounded subset BCH, and let
(g,) be any sequence in T(B).

Then gn='I‘fn for some fneB and since B is
bounded, so (f) is bounded. By assumption,
(Tfn) contains a convergent subsequence.

Hence T(B) is compact. Therefore T is
compact .

THEOREM 11.

Let H,, H, be Hilbert spaces. If (T)) is a
sequence of compat operator from B(H,,H,)
and §T -T1—0 for some TEB(H,,Hy), then
T is compact, where B(H, H,) be a set of
bounded operator H, into H,.

(Proof)

Let (f) be a weak null-sequence from H,,
then the sequence (fn) is bounded, say Ifnl
<c for all nEN, Let €0 be given, Since
I T,-T1—0, there exists an m,EN such that
I Tm,-T | <ec’'/2. Since Tm, is compact,
there exists an n,&EN such that | Tmef_I<e/2
for all n>n,.

It follow from this that for all n2n, I Tf §<
1 (T-Tm)f | + I Tmef | <€,

Therefore Tf —0 and T is compact,

PROPOSITION 12.
If SeB(H,,H,) and TEB(H,.H,) and if one
of these operators is compact, then STEB(H,,

H,) is compact.

PROPOSITION 13.
Let T : H,—H; be a linear operator and let T
is bounded and dim T(H,){cc Then T is

compact,

(Proof)

Let (f) be any bounded sequence in H,.
Then |TntSITI Mf,1 and then (Tfn) is
bounded.

Since dim T (H,) (oo,
compact,

(Tf n) is relatively

It follows that (Tf)) has a convergent
subsequence
Since (f r|) was an arbitrary bounded

sequence in H,, T is compact,

THEOREM 14,

Let ¢* be a Hilbert sequence space and an
operator T: ¢'—¢® be defineded by T,=y=
(n). where nj=ej/2j for j=1,2,--.

Then T is compact,

(Proof) .

T is linear, If x= (ej/Z)El', then y= (nj)EE’,
Let T, :¢'—¢" be defined by T x=(&/2,
&§/2',-,6 /2", 0, 0, )

Then T, is linear and bounded, by
proposition 13 T is compact.

By theorem 11, we shall show that T —T

T )xl'= 32

j=n+1

le/2i1*=

= 1/2860 el

j=n+1

<1/2: 35 le/2|t
jea+)  J

shx|/2>

Choose the supremum over all x of norm 1,
then we have |T-T |=<1/2°,
Hence T,—T and T is compact,
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