Minimization of mean absolute error of
nonparametric regression function estimator
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Summary

The smoothing parameter or bandwidth for a kernel estimator of a regression function in fixed
design model has been specified to minimize either asymptotic mean squre error or other measures.
In this article we construct a simple methods, which permits asymptotic minimization of mean abso-

lute error for nonparametric kernel regression function estimator of fixed design model.
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1. INTRODUCTION

where the independent variable is random,

From a practical point of view, the fixed

In the last decade, nonparametric regression design regression model, where the values of
methods have gained considerable interest, the independent variable are fixed in advance,
Nadaraya (1964) and Watson (1964) introduced seems to be of broader applicability, There-
kernel estimators in the random design case, fore we will concentrate on the fixed design
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regression model .
For fixed designs the design variable is
usually assumed to be restricted to some in-

terval say (0,1]:
Y=m(z)+¢&;, i=1,--.n, (1-1
where 0< 1, z,8 <.+ z,<1 and(g) are

independently and identically distributed, E(¢})

=0 and Var () =0°,

If there are several measurments made at
one fixed point ¢, Y, can also be sample
means or medians, or other location
estimators based on the repeated measurement
made at the same point, The error structure
and the class to which the regression function
m belongs have still to be specified for (1-1).

As a nonparametric estimator of the func-
tion m, Gasser and Miiller (1979) introduced

the following kernel estimator,

h=i2(” KEL )y, 02
his s
where sj=% » $=0. s;=1. The value

h(n) is the bandwidth or smooting parameter,
steering the degree of smoothness of the
estimated curve m, variance and bias of m,
The kernel K satisfies §K{x)dx=1 and further

conditions to be given in the following section,

2. SOME PROPERTIES OF
KERNEL ESTIMATOR

A proposal for estimating m is due to
Priestly and Chao(1972);

=3 00 k TE Y, @
=1

where h is a sequence of positive bandwidths
depending on n such that h—(Q, nh—<o as n
—oo and where K is a nonnegative kernel
function satisfying :
§K(x)dz=1 §K*(z)d xoo,

A further kernel estimator proposed in
Gasser and Miiller (1979) is defined as in (1-
2).

The definition of Priestly and Chao(1972) is
very close to the definition of Gasser and
Miiller (1979), since it is a Riemann sum
approximation to I'l"l(x) in (1-2).

A minor advantage of the estimator of
Gasser and Miller (1979) is that weights al-
ways add to 1, In the rest of the paper, we
will concentrate on the kernel regression
function estimator m in (1-2). In what
follows, the kernel K is assumed to be
satisfied the following conditions :

Al. K has compact support (-1,1) and §K
(x)d(z) =1,

A2, 1K)
for u,vel-1.1J.

A hierarchy of kernels may now be defined .

—K(v) i< {u~v|7 for some r>0 and

Definition A kernel satisfying A1-A2 is
called a kernel of order p if the following
holds :

§2K (x)dz=0 j=1--, p-1
§ zpK (r)dI=BD(K)=¢=0

Optimal kernels were previously derived in
terms of Legendre polynomials (Gasser et al.
1985) . Gasser and Miiller (1979) derived the
following theorems and corollary.

Theorem 2.1 Let K be a kernel of

-126-



Minimization of mean absolute error of nonparametric regression function estimator 3

order p, and that the regression function m (x)
is s times differentiable with a continuous s th
derivative on (0,1) (s> p). Assume h—0 and
nh—coe as n—c>, Then the bias and variance

for all z€(0,1) can be expressed as follows :

Bias (i (2)) =512 b (mor (9B, () +
o) +0(+)

Var (m(z)) = (§K*{x)dz+0(1))

(72
nh
Theorem 2.2 If the assumptions of

Theorem 2.1 are valid, and if :
max|s;-s;, —% i =o(-rlT) .

we have for all x€(0,1) for the mean square

error :

MSE (M (%)) =7‘1’-;— § K2 (x) dx+

1P B (K)'m®) (x) 240 () + 0 (h2)
p! P n’

Corollary The asymptotically optimal
bandwith h with respect to MSE is as

follows :

f=(L P’ S K (0 dx L)ﬁi—,
P BK)'m®P(x)* n
where m® (z) #0,
The above result of the Theorem 2.1 are
obtained by approximating sum byintegrals,

using Taylor expansion.

By the bias and variance of m(z) the MSE
optimal bandwidth sequence is seen to be

]
h~n"2+1 , and this yields the rate

P _ .
convergence MSE~n #*!  For function me&

C((0.1). this rate is optimal. Consistency in
MSE of the estimate m(x) is established by
the following theorem 2.3

Theroem 2.3.

differentible and k bounded, Then r?](.r) is a

Let m be s times

consistent estimate of
a) m is continuous at .

b) nh—oo, h—oo as n—oo,

To obtain the desired result in section 3, we
need the some lemmas, In the following, ¢
and ¢ denote cumulative distribution function
and probabilty densty function of standard

normal random variable, respectively,

Lemma 2.1

random variable, Then

Let Z be a standard normal

¥

a) S:o z¢(z)dz=4¢ (v) andS . z(g)dz=-¢(v)

b) ¢’ (z)z=-¢(2) 2,

Proof For a),
= (= _z gy
S ; 2¢(2)dz S ; v exp ( 7 )dz

7127 exp (--2Lz Y=g .

Similarly, S L 26 (z)dz=-¢(y)

For b),
¢ D2=-—Le exp(-L)=-4(2)2
NG 2 )

Lemma 2.2 Let Z be a standard normal
random variable and y be a real number,
Then

ElZ-y|=20()y—y+2¢ (v)
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and
EiZ-yi=E{Z+y!.

Proof, Note that E|Z—y|=§ [z—y|¢(2)dz,

Since §iz=ylg@dz=|" (y-26@dz+

Sm {z—y)¢(z)dz, we obtain
.

EIZ—y|=28(y)y—y+28(y) from Lemma
2.1.

Also, E|Z-y|=E|Z— (—y)|=

2(1=0) (—y) +y+28(—y.

Hence the desired results are obtained,

3. MINIMIZATION OF MAE

Under certain regulatity conditions on m (z)
an exact expression for the asymptotically
optimal value of h is readily derived (see e.g.
Gasser and Miiller (1979)). An alternative
measure of loss is the mean absolute distance
between m and 1;1 which we shall call the
mean absolute error (MAE) .

Specifically,
MAE(m(,h) =Elfh(x.h)—m(x) |  (3-1)

which is local analogue of the L, distance
between m and m,

P Hall and M P Wand(1988) constructed a
simple algorithm, which permits asymptootic
minimization of L, distance for nonparametric
density estimators,

In this chapter we apply the results of P,
Hall and M. P. Wand(1988) to find for
asymptotically optimal bandwidth minimizing
MAE in fixed design regression.

From well known Theorem 2.1, we obtain

i 6,1 —m () =S hem o) (0B, (0) +

c ,
kK (x)dx)+Z (3-2)

as n—oo, h=h(n)—0 and nh—oo, where Z=Z
(z) is a standard normal random variable .

To balance bias and standard deviation we
must choose h so that each of these
Quantities are of the same order of

1

magnitude, This involves taking h=u’n »+!
for some positive constant u not depending on
n,

Let b, and o, stand for (—;1),1 m () (x) B, (K)

and oV(K)+ where V()= {K>(x)dx,

respectively,

Theorem 3.1 Let the conditions of

I
Theorem 2.1 be satisfied and let h=u?n %+1

where u is a positive number,

Then the MAE(M(x,h)) is asymptotic to
I
n 2p+1 ax (u)
where
Oy (W) =75 |ub,—ulozlg(2)dz  (3-3)
and ¢ is the standard normal density function
Proof, Note that MAE (m (x,h)) =E |/ (x.h) —
m{x)|.

using (3-2), we obtain the expression

R
Elr?l(x,uzn +l ) —m(x) | =

JR T
7+1 —u
n #*1 E|buzr—ule, Z|

where Z is a standard normal random
variable,
Then
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* N
MAE ((m (x,h)) =E{m (x,u?n ®-1 )—m(x) |

.
=n %+! SibXUZD—u‘loP_z‘p’(z)dz,

Theorem 3.2 Under the conditions of
Theorem 3.1, there exists only one u
minimizing &, (u) in (3-3).

Proof, From Lemma 2.2, §,(u) is expressed

as follows :

8y (u) = § ju2rb,—ule,z[ 3 (z)dz

- bx bx
=9q u-l p+1 =2 2p+12X
2o, u 1 (u -y Ju %

+20ku“¢(u29°l§i)~—u29bk
X

Using Lemma 2.]1. we obtain

C e . b
% 5, (L‘)=u"‘\2puzp+lb.\_{\¢(\UZD—]_O;‘)_
k

N]»—'

—oy$ (utpr1 2 )]
O

=u?A, (u2+)
where
b | N N
Ly V) =2pvby(Blv2 )= 5 Imaslv ).
Now, by b) of Lemma 2.6
. b, 1
A, (v)=2DVbx[¢(VU— )—f I+
k
2 -1 oD
2p+1)bL oi! ve(v—=),
Oy
which is positive for all v)0.

So, A,(v) is an increasing function of v,

Alsolim Ag(v)=co, while for b,*(, and

lim A (v)=-0.6(0):0.

v—0

This proves the fact tha: there exists only one
¥ such that A, (v) =0, Therefore there exists

only one 1 such that 8, (u) =0,

Theorem 3.3 Let the conditions of
theorem 3.1 be satisfied.

Then the value of h which minimizes MAE
I
at r is asymptotic to (v) ®"! n #»*! where

v is the root of A, (v) =2pva[,¢(v%)—_21. )—
k

by
Ok ¢(v°—k ).

Proof. From Theroem 3.1, we see that
minimizaing MAE (m(x,h)) is equivalent to
minimize &, (v) in (3-3),

From the fact that 4§ (u) =u2l (u2p+1),
the value of u which is the zero of 2. (u2-1)
=0 is the value which minimizes &, (u).

Let the value of v for which A (v)=0 be {"
Then the value of u'for which minimizes &,
W. is b= FT

Therefore the value of h=u3n-3?‘ which
minimizes MAE at x is asymptotic to
@FT 2B

In practice the equation A (v) =0 may be

solved using New:ion's method, as follows.

Let Hiv) =2
A

Then

H{v) ={2pvbi@:vb) —F} —o, ¢ (vb I
(Zpvb AP (vdh —F! =2(p— 11 bl Ivg 1vhi -l

If v, is an approximation 10 the solutior of
A =0, ther v,=v,-H(v,),
Continuing :his process. we form the

sequence Vv,.v.-. where Vio=vi—H®) such
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thatlim v,=V for 8,0 =0.

n—oo
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