On the Nonparametric Statistics for the Distribution Function
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AwmEMO| FHMEE RO WS F

& o

2

E: 4

of

A RXE ERBSHENS B2 D Boed A0 FRBEHEE BE2 o) IR EURESHE R

St FagMEel o4 F J5¥ 24

1. Introduction.

In the present note we shall study the pro-
blem of devising an optimum statistic for the
‘'statistical inference of an unknown population
cumulative distribution function. In finding a
'statistic for distribution function, it is import-
ant to construct it as nonparametric so that its
distribution does not depend on the functional
form of the cumulative distribution function
of the population. Kolmogorov and Sminov
(1933) gave an asymptotic solution to this pro-
blem for large sample. This proposzd an useful
nonparametric statistic, so called Kolmogorov
statistic, for the problem. In this note we gave
-another solution of the problem by means of
-constructing a statistic whose distribution is
-asymptotic chi-square distribution which is

‘widely tabulated in order to avoid tedious co-
‘mputation of Kolmogorov statiistic.

Let X,, Xs,,.., X, denote a random sample
from an unknown cumulative distribution fu-
nction Fx(x). The sample cumulative distrib-
ution function, denoted by F.(x), is defined
by

Fa(x) =%(number of X; less than or equal

to x)

=19
—T.E‘I(-amx)(x)

for all real number x. For fixed X, Fp(x) is a

statistic:since it is a function of the sample.

It therefore has following probability distrib-
ution

P(Ro=£)=(3) [Feo)' - [1-Feco)™
k=0,1,2,-,n

For fixed x, F(x) is an unbiased and consist-
ent estimator for Fx(x), regardless of the
form of Fx(x). According to Borel's strong
law of large numbers, the statistic Fo(x) con-
verges to Fx(x) with probabilility one (Glive-
nko-Gantelli Theorem). Therefore, for suffi-
ciently large sample size n, the deviations, Fy

(x)—Fu(x), should be small for all values of x.

2. Nonparametric statistcs.

For any real value x and (&<l let

@D U =inf [F.(x)—Fx<x>+s]

§<1-F(x)
@2 V.=suf (A0 -Fx(0-3)

8<1-F(x)
Then for fixed n, &, U:>0 (V:<O) implies that
the curve of the sample cumulative distribut-
ion function F,(x) never overlaps the curveof
the function Fx(x)-8§ (Fx(x)+8). Note that
U"30 if and only if Fx(x)—Fy(x)<8; and simi-

larly cV:<0> if and only if Fa(x)—Fx(x)¢s.
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These statistics are ncnparametric, as is pro-
ved in the following_theorem.

Theorem 1. The statistics U:, V: are nonp-
arameiric for any coniinuous distribution fu-
nciion Fx(x)

Proof. The sample cumulaiive distribution

function is constructed from the order statis-
tics as

_k for Xew<x<Xuwn
R =5 p201,2 5

where X, X, X are the order statis-

tics of a random sample and X =—o0, X+
=00

Therefcre, we have

U:= inf [F..(x)—Fx(x)+8] = min. inf

0<k<n X < x{ Xy

[Fa—Fx(x0+8)

=min. inf

(£ _pxc
—Fx(x)+8
0<k<n. Xw<x<Xusn» -7 ]

= min [%— sup Fx(x) +8]
0<k<n XS x<Xarn

= min.
0<Lk<n

Similarly, we have

1r"=sup [F,.(x)—Fx(x)—ﬂ = max. sup
* ox - 0<Lk<sn, Xw<x<

Xas [Fn(x)—FX(X)—S]

(£ - FetXueid+8]

k
= max. sup |,——F,rr(x)—a
0<k<n X(k)SX<X(kH> ~n ]

k .
= (7— inf F,(x)—s:l

= max |
OSkSn X(k)SX<X(k+|)
k ~N
= max. | ——Fx{Xu)—8
0<k<n [” o J

Therefore, U:and V: are ncnparameteric sta-
tistics since the probabilicy distributions of
these are depend only cn the random variables
Fx(Xu&,) which are the order scatistics from
the uniform disiributicn razardless of Fx(x)
as long as contineous cn (0, 1.

Theorem 2. Let U:and V: be nonparameiric
stacistic from the sample disiribution function
Fn(x) and trues disiribucion function Fx(x) as

in (2.1) and (2.2) then
8 }
Pt > 0] =p(V <0]
Proof. Let X«, X, Xw be the order-

statistics of a sample from a contineous dist--
ribution function Fx(x).

Y(l)=FX(X(l))
then
Yo, Yoy .., Y are also order statistics from-
the uniform distribution on(0, 1) with density-
function

for i=1,2,..,n

f G vz, eyn)=nlely
Y, Yeor, = Yem

where A={(y., 32, .., ¥ 10< 5, <3< - < ¥a <1}
One can easily check that U:>0 if and only if’

Yin< Y(i+n<7t“+8

Y <V ausn<l for i=k+1, k+2,..,m:
where K=(n(1-8)J and Y ,=0
similarly, v:<o ifand only if

for i=0, 1, ..,k

7‘.—'8<Y(.)<Y(,N) fOI‘ l.=n—k,. o n

0<Y (s <Y 41> for i=1,2,.., n-k-1
whare Y n=1. But if we take
Yor=1-Y (s fori=12...n
then the order statistics Y., Y., Your have:
the same distribution function as Y)Y e),..,
Y and the inequalities(2.4) reduce to(2.3).
Therefore, we have P{U'>0) =P V<o),
From the above theorem we see that l_gg
P (U'>0] =lim P (v'<0] and let ucs) den-
ote the common limit probability distribution.
in the equality. We then have the followings..
Theorem 3. For every 420, u( ‘/—i;-)=l—exp.
(-2n2) ’
Proof. P(U'>0] =P (Y <Vaurn<5+8
for i=0,1,..,k Y, <Vu:n<l for i=k+1,
k+2,.., n]
=P [(O<Y (<BN <Y <o+
(y(k-1><Ym<"§ +ON W< a:n<DNGarn

<Y ey <O N(Fw-n <Y(n7<1)] .
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Hence, we obtain the probability as follows:

- S nl+s Kes 1 1
@.5) n!ff f f f
oY Y Yk-1 Yy ¥ Y-

dyw-dyw -dyw

LV S P oY
_ A=-yad"t
@0 —n!foj y(,)fy(, 2) (n—k)! BECEDREE
~-dy
=n! f J’*“ v —L1+ " h)
Y Y (n=-k+D!
Ay dya)
2 L ALEPR P |
en _(a--=) f [F+e.
(n-k+1)! o Yw
Bia
f dJ’(n-n'"d}’cn]
¥

Let Ays(k) denote the integral (2.6),

L Y} | 7]
2.8 B,..a(k)=f f f dyo-dyw
oY Yw

Yk-»

k \*k
@9 f(k)=(1‘3‘7)
(n—-k) !
We get

(2.10) P[U:>0] =n! « Aps()=n(ApaCk—1)

—fk—=1) + Bys(k—=1)
On the other hand,
A a(R)=A,,s(k~1)—f(k—1)Bps(k—1)
= Apa(k—2)— f(k—2)By.sk—-2) - f(k—1)
B,, s(k—1)
Using finite induction we have

Ann(k)=A,,,(0. lf(O)B. W +£1) « Bua()+

= HfK=1) + BuuCk—D) ]

=A@ = (LD Bosth)

Where k is the largest integer in n(l —§).
Now let us consider the limit probability li_gg
»

’ h
P [U>0] when ==
h

We can check that : l( i ) 1—-exp(-2h?) The

proof of the theorem is complete.

Remark. According to the above Theorem 3.
we have

. Al -
lim P[0 >0) =tim P [V} 0] =1-¥
for all d>0 which is the chi-square distribu~
tion with two degrees of freecomr. Therefore
P [2v# (Fx()=Fux)<y@ | =P [2¢7 (Fa(x)

—Fx(x))>JF] is approximrately chi-square

distibution. This fact allews ciaviciics, Hy=
207 (Fx(x)—Fu(x)} and Gy=2v n{ FA(x) — Fx(x)),
to be broadly used as testc stavicvics for goodn-
ess of fit. That is H, and G, are used io one
tailed test that the distribution that is
being sampled from is some cpecified contin-
eous distribution ; a test null hypothesis
Fy(x)=F,(x) against one sided aliernative
Fx(x)>Fy(x) or Fx(x)<Fy(x) respectively.
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