On ideals in a Pseudo-Bezout domain

Song Seok-Zun

Pseudo-Bezout 整域의 構造에 關한 研究

宋錫準

Summary

In this paper, we find some characterizations of t-ideal in a pseudo-Bezout domain, and we prove that the structure of pseudo-Bezout domain is the intersection of the localized valuation rings at prime t-ideals.

I. Introduction

Let D be any commutative integral domain and K its field of fractions, then the fractional principal ideals form a partially ordered group G. If G is actually lattice-ordered, D is said to be a <u>pseudo-Bezout domain [3]</u>. This is equivalent to the condition that any two nonzero elements of D have a greatest common divisor. (In this fact, Sheldon refers to such a ring as GCD-domain [5] and Cohn refers to such a ring as HCF-ring [4]).

The purpose of this paper is to focuse upon the t-ideals and investigate the structure of a pseudo-Bezout domain using prime t-ideals. In section II, we have some characterizations of t-dieal in a pseudo-Bezout domain. Section III shows the existence of the smallest t-ideal containing a given ideal, and the structure of a pseudo-Bezout domain with prime t-ideals.

Throughout this paper, the word "domain" will always mean a commutative integral domain

with identity. An "ideal" of D cannot be equal to D itself, and a "proper ideal" is a nonzero ideal.

II. Definition and Characterizations

Definition 2.1. Let D be a pseudo-Bezout domain. The ideal of D is a <u>t-ideal</u> if whenever a and b are nonzero elements of l, gcd(a,b) is in I as well. ([5] and [7])

Among the examples of t-ideals of D are all principal ideals of D.

Proposition 2.2. Let D be a domain. Then D is a pseudo-Bezout domain if and only if every finitely generated t-ideal is principal.

Proof. Let I be a finitely generated t-ideal. Let $x_1, x_2, ..., x_n$ be generators for I. Then there exists $d = gcd(x_1, x_2, ..., x_n) \in I$. Hence I = (d) is principal. Conversely, let $x, y \in D$ -{0} Then the ideal generated by x and y is a principal ideal of D. Hence there exists $d = gcd(x, y) \in D$. Therefore D is a pseudo-Bezout domain.

Corollary 2.3. If a pseudo-Bezout domain D

- 161 -

2 논 문 집

is Noetherian, then every t-ideal is principal.

Theorem 2.4. Let D be a pseudo-Bezout domain

- and I be a prime ideal. Then these are equivalent;(a) I is a t-ideal
 - (b) D_I is a valuation ring
 - (c) For any x,y ∈ I, there exists z ∈ D-I such that xz ∈ (y) or yz ∈ (x).

Proof. (a) implies (b); Assume that I is a t-ideal. Take a nonzero element x/y in the fraction field of D such that $x,y \in D$ and gcd(x,y) = 1. Then either $x \notin I$ or $y \notin I$ since $1 \notin I$. Hence $x/y \in D_I$ or $y/x \in D_I$. Thus D_I is a valuation ring. (b) implies (c); Now suppose that D_I is a valuation ring. Let $x,y \in I$. If $x/y \in D_I$, then x/y = u/zwhere $u, z \in D$ and $z \notin I$. Hence $xz = yu \in (y)$. Otherwise $y/x \in D_I$, and there exists $z \in D$ -I such that $yz \in (x)$. (c) implies (a); Let I satisfy (c). If I is not a t-ideal, then there exists some $x, y \in I$ such that $d = gcd(x,y) \notin I$. Letting x = ud and y = vd, we have $u \in I$ and $v \in I$ since I is prime. Hence by (c), there exists $z \in D$ -I such that $uz \in (v)$ or $vz \in (u)$. Since gcd(u,v) = 1, v must divide z or u must divide z. Then $z \in (v) \subset I$ or $z \in (u) \subset I$. But this is impossible because $z \in D$ -I. Hence I is a t-ideal.

Corollary 2.5. Let D be a pseudo-Bezout doniain. Then in D, every prime ideal contained in a prime t-ideal is again a prime t-ideal.

Proof. Let P be a prime t-ideal and Q be a prime ideal contained in P. Then $D_P \subset D_Q \subset K$ (=the fraction field of D) and D_P is a valuation ring by Theorem 2.4. Since D_Q is also a valuation ring by the above inclusion, Q is a prime t-ideal by Theorem 2.4.

III. The Structure of pseudo-Bezout Domain using t-ideals

In this section, let D denote a pseudo-Bezout domain. Let I be an ideal of D. We shall construct the smallest t-ideal which contains I. Note that while D is not a prime t-ideal, D is a t-ideal.

- Let $J \subset D$. Define
- $J' = \{x \in D: \text{ there exist } a, b \in J \text{ such that } x = gcd \\ (a,b) \}.$

Then $J \subseteq J'$ since a = gcd(a,a) for any $a \in J$. Let N denote the set of nonnegative integers. Define $I^0 = I$ and for each $n \in N$, $I^{n+1} = (I^n)'$. Let $\overline{I} = \bigcup_{\substack{n \in N \\ n \in N}} I^n$. We shall use the following lemmas to show that \overline{I} is the promised smallest t-ideal of D which contains I.

Lemma 3.1. Let $n \in N$. Then I^n is closed under multiplication with elements in D.

Proof. We prove this by induction. For n = 0, $I^0 = I$ is an ideal of D and hence $ID \subseteq I$. Assume that this lemma holds for n = k. Let $x \in I^{k+1}$, $y \in D$. Then there exist $a, b \in I^k$ such that x = gcd(a,b). By assumption, $ay, by \in I^k$, and $xy = gcd(ay, by) \in (I^k)' = I^{k+1}$. Hence $I^nD \subset I^n$ for all $n \in N$.

Lemma 3.2. Let $x, y \in I^n$. Then $x - y \in I^{2n}$.

Proof. We prove this by induction. For n = 0, $I^0 = I$ is an ideal of D, and hence $x \cdot y \in I \subset I' = I^2$. Assume the result for n = k. Let $x, y \in I^{k+1}$. Then there exist $a, b, c, d \in I^k$ such that x = gcd(a, b), y =gcd (c,d). Putting gcd(x,y) = d, we have x/d, $y/d \in D$. Let x' = x/d, y' = y/d. Then ax', ay', bx', by', $cx', cy', dx', dy' \in I^k$ by Lemma 3.1. Hence by assumption, $ax' \cdot ay' = a(x' \cdot y') \in I^{2k}$. Similarly $b(x' \cdot y')$, $c(x' - y'), d(x' - y') \in I^{2k+1}$, and gcd(c(x' - y'), $d(x' - y')) = x(x' - y') \in I^{2k+1}$. Thus gcd(x(x' - y'), $y(x' - y')) \in I^{2k+2}$. We have gcd(x(x' - y'), y(x' - y')) = $d(x' - y') = x \cdot y \in I^{2(k+1)}$. The lemma follows by induction.

Proposition 3.3. If I is an ideal of D, then \overline{I} is the smallest t-ideal of D which contains I.

Proof. From lemma 3.1 and lemma 3.2, we have that \overline{I} is an ideal. And the construction of \overline{I} guarantees that it is a t-ideal containing I. If H is a t-ideal of D, and J is an ideal of D contained

in H, then by definition, $J' \subset H$. Hence if $I \subseteq H$, then $J^n \subseteq H$ for all n, and therefore $\overline{I} \subseteq H$.

Lemma 3.4. Let J be a t-ideal and I be an ideal of D. If there exist $x \in \overline{I}$, $y \in D$ such that $xy \notin J$, then there exists $a_0 \in I$ such that $a_0 \notin \# J$.

Proof. Suppose that there exist $x \in I$, $y \in D$ such that $xy \notin J$. Then there exists $m \in N$ such that $x = a_m \in I^m$. Now there exist b_{m-1}, c_{m-1} $\in I^{m-1}$ such that $a_m = gcd(b_{m-1}, c_{m-1})$. If $b_{m-1}y \in I$ J and $c_{m-1}y \in J$, then $y \in J$ since J is a t-ideal. Since $xy \notin J$, this is impossible. Hence $b_{m-1} y \notin J$ or $c_{m-1} y \notin J$; that is, there exists $a_{m-1} \in I^{m-1}$ such that $a_{m-1}y \notin J$ (Taking $a_{m-1} = b_{m-1}$ or $a_{m-1} = b_{m-1}$ c_{m-1}). Again, there exist b_{m-2} , $c_{m-2} \in I_{m-2}$ such that $a_{m-1} = gcd(b_{m-2}, c_{m-2})$. If $b_{m-2}y, c_{m-2}y \in J$, then $y \in J$ since J is a t-ideal. Since $a_{m-1}y \notin J$, this is impossible. Hence $b_{m-2}y \notin J$ or $c_{m-2}y \notin J$; that is, there exists $a_{m-2} \in I^{m-2}$ such that $a_{m-2}y \notin J$ $(Taking a_{m-2} = b_{m-2} \text{ or } a_{m-2} = c_{m-2}).$ If we proceed this method, then we have that there exists $a_0 \in I^0 = I$ such that $a_0 y \notin J$.

Theorem 3.5. Let S be a multiplicatively closed subset of D. Let P be maximal in the set of t-ideals of D disjoint from S. Then P is a prime t-ideal of D.

Proof. Let I and H be ideals of D which properly contain P Then \overline{I} and \overline{H} meet S. Let $x \in \overline{I} \cap S$ and $y \in \overline{H} \cap S$. Then $xy \notin P$. Hence by lemma 3.4, there exists $a_0 \in I$ such that $a_0 y \notin P$ and again by lemma 3.4, there exists $c_0 \in H$ such that $a_0 c_0 \notin P$. Hence IH $\notin P$. Therefore P is a prime ideal of D, which completes the proof.

Corollary 3.6. Every proper t-ideal of D is contained in a prime t-ideal of D.

Proof. It is easily checked that the union of a chain of proper t-ideals of D is a proper t-ideal of D. By Zorn's Lemma, there exists a t-ideal P which is maximal in the set of t-ideals of D. Since P is contained in some maximal ideal M

of D, P is the t-ideal which is maximal in the set of t-ideals such that $P \cap (D-M) = \phi$. By Theorem 3.5, P is a prime t-ideal of D.

Theorem 3.7. Let S be a saturated multiplicatively closed subset of D. Then complement of S is a union of prime t-ideals of D.

Proof. Let $x \in D$ -S. Then $(x) \subseteq D$ -S since S is saturated. Since (x) is a t-ideal of D, then by Zorn's lemma, (x) is contained in a t-ideal P_x which is maximal in the set of t-ideals of D disjoint from S. By Theorem 3.5, P_x is a prime t-ideal of D. Hence D-S = $\bigcup_{x \in D$ -S $x \in D$ -S

Recall that if A and B are ideals of D, then the set $B:A = \{x \in D \mid xA \subset B\}$ is an ideal of D.

Proposition 3.8. Let Q be a set of prime ideals of D which satisfies the following property; if $a,b \in D$ such that $a \notin (b)$, then there exists $P \in Q$ such that $(b):(a) \subseteq P$. Then $\bigcap_{P \in Q} D_p = D$.

Proof. Now $D \subseteq \bigcap_{P \in Q} D_P$ since $D \subseteq D_P$ for each $P \in Q$. Let $a, b \in D$ such that $a/b \in \bigcap_{P \in Q} D_P$. Let $P \in Q$. Then there exist $c, d \in D$ such that a/b = c/d and $d \notin P$. Now $ad \in (b)$, and so $(b):(a) \notin P$ since $d \in (b):(a)$. Thus $a \in (b)$ by assumption, and so $a/b \in D$. Hence $D = \bigcap_{P \in Q} D_P$.

Lemma 3.9. Let $a, b \in D$ such that $a \notin (b)$. Then (b):(a) is a proper t-ideal of D.

Proof. Since $a \notin (b)$, (b):(a) is a proper ideal of D. Let $x, y \in (b):(a)$ and d be the gcd of x and y. Then we have ax, $ay \in (b)$ and ax = bu, ay = bv for some $u, v \in D$. Putting x = dx', y = dy', we have dx'av = xav = buv = yau = dy'au and x'v = y'u. Since gcd(x',y') = 1, and $y'u \in (x'v) \subseteq (x')$, we have $u \in (x')$. Thus it follows that u = wx' for some $w \in D$. From above ax = bu, we have x'da = bwx'and hence $da = bw \in (b)$, and so $d \in (b):(a)$. Therefore (b):(a) is a proper t-ideal of D.

Theorem 3.10. Let \overline{Q} be the set of prime t-ideals of a pseudo-Bezout domain D. i hen $D = \bigcap_{n \in \overline{Q}} D_p$.

Proof. By lemma 3.9, corollary 3.6 and proposition 3.8, it holds.

- 163 -

4 논 문 집

References

- [1] Hungerford T.W., Algebra, Holt, Rinehart and Winston, Inc., 1974.
- [2] J. Lambek, Lectures on rings and modules, Chelsea Publishing Company, New York, 1976.
- [3] N. Bourbaki, Commutative Algebra, Chapter 7, Hermann, 1972.
- [4] P.M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109(1963), 313-331, MR 27 #5785.
- [5] P. Sheldon, Prime ideals in GCD-domains, Cand. J. Math. 26 (1974), 98-107.
- [6] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
- [7] P. Jaffard, Les systemes d'ideaux (Dunod, Paris, 1960).
- [8] R.C. Heitmann, Prime divisors and flat extensions, Journal of Algebra 74 (1982), 293-301.

國文抄錄

Pseudo-Bezout 整域의 構造에 關한 研究

本 論文에서는 Pseudo-Bezout 整城內에 t-ideal을 導入하여 먼저 그의 特性을 몇가지 찾았고, 다음 으로 이 整城의 構造가 素 t-ideal들에서 所屬化된 付值環들의 交集合으로 나타남을 證明하였다.