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Summary

In this paper, we find some characterizations of t-ideal in a pseudo-Bezout domain, and we prove that

the structure of pseudo-Bezout domain is the intersection of the localized valuation rings at prime t-ideals.

1. Introduction

Let D be any commutative integral domain and
K its field of fractions, then the fractional principal
ideals form a partially ordered group G. If G is
actually lattice-ordered, D is said to be a pseudo-
Bezout domain {3]. This is equivalent to the con-
dition that any two nonzero elements of D have
(In this fact, Sheldon
refers to such a ring as GCD-domain [5] and Cohn
refers to such a ring as HCF-ring [4]).

a greatest common divisor.

The purpose of this paper is to focuse upon the
t-ideals and investigate the structure of a pseudo-
Bezout domain using prime t-ideals. In section II,
we have some characterizations of t-dieal in a
pseudo-Bezout domain, Section III shows the
existence of the smallest t-ideal containing a given
ideal, and the structure of a pseudo-Bezout domain
with prime t-ideals.

Throughout this paper, the word “domain”

will always mean a commutative integral domain

with identity. An “ideal” of D cannot be equal

to D itself, and a “proper ideal” is a nonzero ideal.

I1. Definition and Characterizations

Definition 2.1.
The ideal of D is a t-ideal if whenever
a and b are nonzero elements of 1, gcd(a,b) is in I
as well. ([5} and [7])

Among the examples of t-ideals of D are all

Let D be a pseudo-Bezout

domain,

principal ideals of D.

Proposition 2.2. Let D be a domain. Then D
is a pseudo-Bezout domain if and only if every
finitely generated t-ideal is principal.

Proof.
Let X ,Xx2,....X be generators for 1. Then there

Let 1 be a finitely generated t-ideal.

exists d = ged(x, ’xg,...,xn) €1. Hencel = (d) is
Then the
ideal generated by x and y is a principal ideal of

principal. Conversely, let x,y € D-{0}

D. Hence there exists d = gcd(x,y) € D. Therefore
D is a pseudo-Bezout domain.

Corollary 2.3. If a pseudo-Bezout domain D
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is Noetherian, then every t-ideal is principal.

Theorem 2.4. Let D be a pseudo-Bezout domain
and [ be a prime ideal. Then these are equivalent;

(a) Iis a t-ideal

(b) Dl is a valuation ring

(¢) For any x,y € I, there exists z € D-I such

that xz € (y) or yz € (x).

Proof. (a) implies {b); Assume that I is a t-ideal.
Take a nonzero element x/y in the fraction field
of D such that x,y€ D and gcd(x,y) = 1. Then
either x € T ory € I since 1 € 1. Hence x/y € Dy
or y/x € D].
implies (c); Now suppose that Dy is a valuation
Let x,y € I If x/y € Dy, then x/y = u/z
where uz € D and z ¢ I. Hence xz = yu € (y).
Otherwise y/x € Dl, and there exists z € D-l such
that yz €(x). (c) implies (a); Let I satisfy (c). If
I is not a t-ideal, then there exists some x,y € |
such that d = gcd(x,y) ¢ I. Letting x = ud and
y = vd, we have u € I and v € [ since I is prime.
Hence by (c), there exists z € D-I such that uz € (v)
or vz € (u). Since ged{u,v) = 1, v must divide z or
Thenz€ (vIClorze (u)C 1.
But this is impossible because z € D-I.

Thus DI is a valuation ring, (b)

ring,

u must divide z.
Hence [
is a t-ideal.

Corollary 2.5. Let D be a pseudo-Bezout do-
main. Then in D, every prime ideal contained in
a prime t-ideal is again a prime t-ideal.

Proof, Let P be a prime t-ideal and Q be a prime
ideal contained in P, Then Dp C DQ C K (=the
fraction field of D) and Dp is a valuation ring by
Theorem 2.4, Since DQ
the above inclusion, Q is a prime t-ideal by Theorem

2.4,

is also a valuation ring by

III. The Structure of pseudo-Bezout
Domain using t-ideals

In this section, let D denote a pseudo-Bezout
domain. Let | be an ideal of D. We shall construct
Note that
while D is not a prime t-ideal, D is a t-ideal.

the smallest t-ideal which contains I.

Let J C D. Define
1" = [ x € D: there exist a,b € J such that x = ged
(ab) ).

Then J C J' since a = gced(a,a) foranya€J. LetN
denote the set of nonnegative integers. Define I =

I and for each n €N, [T = (1) LetT = U ",
neN

We shall use the following lemmas to show that T
is the promised smallest t-ideal of D which contains
I.

Lemma 3.1, Let n €N, ThenI"is closed under
multiplication with elements in D.

Proof.
0.1° =1 is an ideal of D and hence ID C 1. Assume
that this lemma holds for n = k. Let x € Ikﬂ,
y € D. Then there exist ab € 1X such that x =
gcd(a,b). By assumption, ay,by € lk, and xy =
ged(ay,by) € (1) = 1K+ Hence I"D C 1" for all
nEN.

We prove this by induction. For n =

Lemma 3.2. Let x,y €I™. Then x-y €127,

Proof.
1° =1 is an ideal of D, and hence x-y €E1CI' =12,
Assume the result forn = k. Letx,y€ 1¥*1 Then
there exist a,b,c,d € 1¥ such that x = ged(ab), y =
ged (c,d). Putting ged(x,y) = d, we have x/d,
y/d €ED. Let x' =x/d, y' =y/d. Thenax', ay’, bx’,
by, cx', cy’, dx’, dy' € X by Lemma 3.1. Hence by
assumption, ax’-ay' = ax'-y) € Izk. Similarly b(x'-
V), ox'=y), d(x'-y') 12X, Hence ged(a(x'-y"),
b(x'-y') = x(x'-y'ye1?*! and ged(c(x'-y"),
dx'-y") = y(x'-y") €12K*] Thus ged(x(x'-y"),
yix'-y') 6_12k+2,We have ged(x(x'-y’), y(x'=y") =
d(x'-y’) = x-yelz(kﬂ). The lemma follows by

induction.

We prove this by induction, Forn =0,

Proposition 3.3, If I is an ideal of D, then T is
the smallest t-ideal of D which contains I.
Proof.

have that Y is an ideal. And the construction of

From lemma 3.1 and lemma 3.2, we

T guarantees that it is a t-ideal containing 1. If
H is a t-ideal of D, and J is an ideal of D contained
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in H, then by definition, J' C H. Hence if I C H,
then 1" C H for all n, and therefore T C H.

Lemma 3.4. Let ] be a t-ideal and I be an ideal
of D. If there exist x €1,y € D such that xy €],
then there exists aq € [ such that agy € J.

Proof. Suppose that there exist x € I, y € D
such that xy € J. Then there exists m € N such

that x = a_ € 1™ Now there exist b

m m-1" “m-1
€ ]m-l such that a.= gcd(bm_l,cm_l), 1f bm_lye
J and Cm-1Y € ], then y € J since J is a t-ideal.
Since xy ¢ J, this is impossible. Hence bm-l yé]
or ¢ 1Y &/ J; that is, there exists a, | € m-!
such thata vy ¢ J(Takinga, =b_ jora ;=
Cm-1)- Asain, there exist bm_2; Cm-2 € Igy.p such
thata , | = ged(bp, o, cm-2)' If bm_zy, Cm-2Y €J,
then y € J since J is a t-ideal. Sincea v ¢ J,this
is impossible. Hence by, »y €1 or CmayY € 15
that is, there exists a,, 5 € iM-2 such that am_zy,é J
(Taking a5 = byy of amy = cy))-
proceed this method, then we have that there exists

If we

ap €1° = such that aoysél.

Theorem 3.5. Let S be a multiplicatively closed
subset of D. Let P be maximal in the set of t-ideals
of D disjoint from S, Then P is a prime t-ideal of D.

Proof. Let I and H be ideals of D which properly
contain P Then ¥ and H meet S. Let x €T NS
and y E HN'S. Then xy g' P. Hence by lemma 3.4,
there exists ag € I such that apy ¢ P and again by
lemma 3.4, there exists ¢ € H such that agco &P
Hence IH ¢ P. Therefore P is a prime ideal of D,
which completes the proof.

Corollary 3.6.
contained in a prime t-ideal of D.

Proof. It is easily checked that the union of a
chain of proper t-ideals of D is a proper t-ideal
of D.
P which is maximal in the set of t-ideals of D.

Every proper t-ideal of D is

By Zom’s Lemma, there exists a t-ideal

Since P is contained in some maximal ideal M

of D, P is the t-ideal which is maximal in the
set of t-ideals such that P N (D-M) = ¢. By The-
orem 3.5, P is a prime t-ideal of D,

Theorem 3.7.

tively closed subset of D. Then complement of

Let S be a saturated multiplica-

S is a union of prime t-ideals of D.

Proof. Let x € D-S. Then (x) C D-S since S is
saturated, Since (x) is a t-ideal of D, then by
Zorn's lemma, (x) is contained in a t-ideal Py
which is maximal in the set of t-ideals of D dis-
joint from S. By Theorem 3.5, P, is a prime t-ideal

of D. Hence D-S= U Px.
x€D-S

Recall that if A and B are ideals of D, then the
set B:A ={x €D [xAC B} is an ideal of D.
Proposition 3.8. Let Q be a set of prime ideals
of D which satisfies the following property; if
a,b € D such that a & (b), then there exists P € Q
such that (b):(a) CP, Then N D_=D,
- peq P

Proof. Now DC N Dy since D C Dy for each
~ PEQ P =P

P € Q. Let ab €D such that a/b € N Dp. Let
PEQ
P € Q. Then there exist ¢,d € D such that a/b =c/d

and d € P. Now ad € (b), and so (b):(a) ¢ P since
d € (b):(a). Thus a € (b) by assumption, and so

a/b&€D. HenceD= N D .
PEQ p

Lemma 3.9. Let a,b € D such that a € (b). Then
(b):(a) is a proper t-ideal of D.

Proof. Since a € (b), (b):(a) is a proper ideal
of D. Let x,y €(b):(a) and d be the gcd of x and y.
Then we have ax, ay € (b) and ax = bu, ay = bv for
some uyv € D. Putting x = dx’, y = dy’, we have
dx'av = xav = buv = yau = dy’au and x'v =y'u.
Since ged(x’,y") = 1, and y'u € (x'v) T (x'), we have
u €(x").
w € D. From above ax = bu, we have x'da = bwx'
and hence da = bw €(b), and so d € (b):(a). There-
fore (b):(a) is a proper t-ideal nf D.

Theorem 3.10. Let Q be the set of prime t-ideals
of a pseudo-Bezout domain D. 1thenD= N DP'

Proof. By lemma 3.9, corollary 3.6 559 pro-
position 3.8, it holds,

Thus it follows that u = wx' for some
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