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Summary

In this paper, we show that the Gauss map of a non-flat complete minimal surface possibly omits 1 to

4 points but can not omit seven points of the sphere.

Introduction

Throughout this paper, all surfaces are consi-
dered to be connected and orientable submanifolds
of R® with the induced Reimannian metric. A sur-
face is minimal if its mean curvature vanishes at all
points, and is flat if its sectional curvature k=o
on the surface.

A well-know theorem of Osserman states that
the Gauss map of a complete minimal surface M?
CR?
capacity unless the surface is a plane. In this paper

cannot omit a set of positive logarithmic

we improve Osserman’s theorem by showing that
the Gauss map of M? cannot omit 7 points of the
sphere (provided M? is not flat). It should be
pointed out, however, that no example is known
where the omitted set has 5 points. Therefore the
problem of determing the exact size of the omit-
ted set remains unsolved.

1. Some examples

1. Enneper’s surface. This surface is given

analytically by the equations:
x= Re [w-l,wal
3
y= Re [i (w5 w)]
z= Re [W?]
where w ranges over the complex plane C . The
Gauss map omits one point (0,0,1).

2. The Catenoid. This is generated by revolving
the catenary z=cosh(x) about the x-axis in (x,y,2)-

space. The Gauss map is 1-1 and omits 2 points
(1, 0, 0). This surface is given explicitly by the
equation.

2% +y? = (cosh x). (Fig. 1)

3. Scherk’s surface, This is a complete, doubly
periodic, minimal surface, which is invariant under
the translations (x,y,z)—> (x,y+2m,z) and (x,y,z)->
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(x+2m, y,z). The interior of a fundamental domain
of the surface can be expressed as the graph of the
function z=log(cos y/cos x) in the square:

[x|[<w/2 and |y|<m/2. This function goes to e
as (x,y)— (t", y) for |y|<m/2 and goes to —wo
2

as (x,y)>(x,+n/2) for |x|<n/2. The resulting surface
assumes the four lines |x|=|y|=n/2 as boundary,
The surface can now be continued indefinitely
by reflection. The Gauss map omits 4 points

(£1,0,0) and (0, 1, 0). (Fig. 2).

(Fig. 1)

We have given examples of minimal surfaces
But,
alternatively, using Weierstrass representation theo-

whose Gauss map omits 1, 2 and 4 points.

rem of minimal surfaces, we get:

Let E be an arbifrary set of k points on S,
where 2<k<4. Then there exists a complete regular
minimal surface in R® whose Gauss map omits
precisely the set E. The proof will be given in the
later.

2. Main Theorems

Theorem 1. Let D be a domain in the complex
w-plane (w=x+iy), g an arbitrary meromorphic

function in D and f an analytic function in D

having the property that at each point where g
has a pole of order m, f has a zero of order at least
2m. Put

an a=La-g,
2
¢2=—i2(1+82) f,
$3=8f.
Then the function \W=(¥, W, ¥3): D>R?, where
(1.2) ¥, (W)=Re )(_[“’ ¢, (2) d2)

will define a minimal surface M in R® whose metric

is given by ds?=A%|dw|?, ie. gii=)\’5ij where A=

%(Hlsl’).

The equation (1.1) is called the Weierstrass
representations of minimal surfaces in R3®. This
representation makes it easy to write down an
enommous number of complete minimal surfaces
in R®. For example, if we set D=C, =1 and g(z)=
z, we get Enneper’s surface. If we set D=C ~

[0]. f=(l—, ), g(z)=z we get the catenoid,
z
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For simply connected regular surfaces, we get
the following result.

Theorem 2. Every simply connected minimal
surface M in R?® can be represented in the form
(1.2), where the domain D is either the unit disk
or the entire plane, g and f have properties stated
in Theorem 1. The surface will be regular if and
only if f satisfies the further property that it vani-
shes only at the poles of g, and the order of its
zero at such a point is exactly twice the order of
the pole of g.

The proof will be found in [6].

It will be convenient, for later use, to make

some geometric observations about the Weierstrass
Let ¥ : D—>MCR? be the surface
in Theorem 1. Observe that g can be thought of
as a conformal map g:D — CU|[«]=§?. In this
sense, g is exactly the Gauss map of the surface.

representation,

In particular, let N be the unit normal vector field
on M and m:8% ~[(0, 0, 1)] >R? be the stereo-
graphic projection, We already know

v_xv
(13) N(q)=—%*_¥_
|\PXX‘1’yl

Then
(1.4) g=n-N-¥.

oy ov
To see this, we note that ——i—= (¢, , ¢2, $3),
oy

and theorefore x

v ov - - —
—x— =Im [($203,01 ¢,, ¢, ¢:)]
ax ay

_(+g)e? 2
=—————( 2 Reg, 2Img, g -1).

Hence
)
NoW¥ = Xx‘l’

I\Px x\llyl

(2Reg, 2Img, [g* 1)
lgl* +1

nlog

(p)e S? C R where ¥(p)=q.

Equation (1.4) means that the poles of g occur
exactly at those points g¢ M where N(@)=<(0, 0, 1).
Thus, if the Gauss map N omits at least one point
of §? we may, by making a rotation of coordin-
ates, assume that g has no poles on M (and, there-
fore, f also has no zeros.)

Let us return now to the general case of a mini-.
mal surface ¥:M~>R" where ¥ is a minimal immer-
sion and M is 2-dimensional orientable manifold,
not necessarily submanifold of R?. Receall that if
in a local coordinate z on M the metric is expressed
as ds?=2F|dz|*, the Gauss curvature K of the sur-

face is given by

1 d d F
K=—-———-—=lo .
F dz dz &

We then have that, in terms of the functions
¢=a_z‘, K can be expressed as

16 A2
lol°

where lpx¢' |2 = 162 ¢'1* —1<p,0'>I*
= E ’ _ "2
< I6;#; — &9l

We introduce on cP™! the Fubini—Study

metric

jzAdz|?

2 —
d 4

&? =
fzl

We have renormalized the metric here (a factor
of 2 instead of 4) so that the induced metric on
the quadratic Q, is of constant curvature i. The

is now an isometry. Each
Pn-l

equivalence, S?~Q,,

of the linear subspaces cp! cc has the form
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do? = 2G|dz|?
where
G_MAWP
Ipl*

Hence, as a generalization of the classical case in
R3 , we have
do?

K=
ds?

Letting C(¥) denote the total curvature of M and
A@) the area induced by the Gauss map, we see
that therefore

C(¥)= —A(D).

Theorem 3. Let E be an arbitrary set of k points
on S?, where 2<k<4. Then there exists a complete
regular minimal surface in R® whose Gauss map
omits precisely the set E.

By a rotation we may assume that E
Let the other points of

Proof.
contains the north pole.

E correspond to the points w;, =12, ..., k-1,

under the stereographic projection. If we set g(w)=
1

k-1 , flw)=w and D=C-{w,, ... ,wk_]]

.‘TT1 (w-w)

1=

in Theorem 1, we obtain a minimal surface

V=¥, ¥,;,¥;):D-R?,
Yy (w)=Ref¥g, (2)dz, k=1, 2, 3.

Since 77! og=No ¥, g(wyFEw, , . ..
map must omit #(w,), ..., n"(wk_]). Futher-
more, there is no weD such that 77 (g(w))=0, 0, 1),
NoW(w)&0, 0, 1) for vueD. Thus, ¥:D- R®
is a minimal surface whose Gauss map omits preci-

» W the Gauss

sely the points of E, and which is complete, because
a divergent path y must tend either to s or to one

of the points L and in either case, we have

=L 2)|dw|==o
Sy Nawi=—{, 1t G+lelidw]

The following theorem is the object of this
thesis. For the sake of clarity we shall state our
result more precisely,

Theorem 4, The complement of the image of
the Gauss map of a non-flat complete minimal
surface in R contains at most 6 points of S2

We need the following some results.

Let M be a connected Riemannian m-manifold,
By the Laplace-Beltrami operator on M we mean
a map A:Cw(M)—-» Cw(M) defined in any of the
following equivalent ways. Let peM and feC™ (M);
then;

(a) If €, ...

normal, then

, €m € Np are pointwise ortho-

m
Af:kEI[Ekekf—(Aek Sk)f]
in a neighborhood of p.

(b) If (x', ...

then in the coordinate neighborhood

s xm) are local coordinates at p,

1 n

a= @ 2 i)
Ve ii=1 ax! ax

where the metric ds’= X gij dx! dx!, the matrix
(8")=((gy )" and g=det((g,)))

c) Af= —*d*df.

Theorem([7], Theorem 1) Let M be a complete
Riemannian manifold of infinite volume and u a
non-negative function satisfying Alogu=0 almost
everywhere, Thean uP=wo for p>0.

Let U be the unit disk in the complex plane.
A function f:U-C is called normal if the family
[£(S(z))]}, where S is a conformal transformation
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of U into itself, is normal in Montel’s sense, i.e.
any sequence in the family contains a subsequence

converging uniformly on compact subsets of U,

Lemma. Let f be a holomorphic function in
the unit disk D and let 0, a, Let a=1-1  kez®
k
Then we have
7] LP(D)
— 94 €
4%+ 172

for every p with 0<p<1.
1

Proof. Since fk omits two values, it is normal
(see [2], page 169). By Theorem 6.5 of [2], there
is a constant C such that

ig'l C
1+g|? 1-zf?

Applying this estimate on the spherical derivative
to fl/k, we have

] C
17k TS 2
kifl (1+[£]) 1-lzl
so that
It} k
<

] _]_ 1—|Z|2
it K20

In particular, IF/(f1* + |12 ¢ LP(D), 0<p<1,

because

S L 12"f1 T drde<
= —— _dr Lo
D(l—|1|2) dz o o(l_rz)P

Proof of Theorem 4,

Suppose that M is a complete non-flat minimal
surface whose Gauss map misses 7 points. By
passing to the universal covering space, we may
assume M is simply connected. By Theorem 2,
M can be represented in the form (1.2), where the
domain D is either U or C. Recall (1.3) . Since
M is not flat, g is non-constant. If D=C, then g is

entire (because g has no poles in C) and, hence,
by Picard Theorem g takes all complex values with
at most one exception, Thus the Gauss map N takes
all values of S? with at most one exception
Futhermore, the functions f and g are holomorphic
in U and [f{>0. From (1.3) we also notice that the
north pole is among the omitted points since g has
no poles. In view of the above we are reduced to
proving the following:

(*) Let f.g be holomorphic functions on U,

IfI>0. Suppose that for six distinct numbers a, ,

-3z, ..., 3 the equation g(z)=ai has no solution

(i=1, 2, ..., 6). Then the metric |fI* (1+ |g|*)?
|dz]? on U is not complete.

For the proof consider the function
2
F ’ 6 R4

g 1 i= fg“ai)

h=f

where-g- <o<1 is as in the previous Lemma and
p=5/6a. Note that f#
[f>0. The Laplace-Beltrami operator A of the
metric

is well-defined because

Adz2 A=IfR (1+.g/2)?)

is given by (1/A) (3/9z) (9/3z). Hence the func-
tion u=|h| satisfies Alog u=0 almost everywhere
in U (there may be a discrete set where g’ vanishes).
We assert that u¢ Lp(M). Indeed, if u is a (neces-
sarily non-zero) constant, this follows from the
fact that complete simply-connected surfaces of
If uis
not constant this follows from Yau’s theorem

nonpositive curvature have infinite area.
([7], Theorem 1). Since the area element is Adxdy,
the condition ug¢ Lp([)) can be written
g1 (+g?)?
—dx

n?= 1 ll‘ail pa

dy:OO.

The contradiction will be achieved by showing
that this integral is actually finite, Let
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Dj= [zeU| |g(z)_aj| <2, Hence ij H dx dy <eo by the lemma. The integral

over U’ can be handled in a similar way. We observe
where
0< £<(%)min la akl that
‘. it ks k=1, ..., 69 k"
! ’ ' (+lg?)?  _  (+1g?y’
Also, let U'=U\ Uj‘;l D,. Denoting by H(2) the in- 1ri5= Ne-gpe u;  l8-g; f5/6
integrand of the last integral we have

is bounded over = U’, Hence

6
IUH dxdy= j§l f]} H dxdy +fU: H dxdy.

1g'tP
IUI dedys___. cj- g dxdy <o,
. "p U lg~aq IP?
On each Dj we have an estimate H&C(lg|"/lg-
aj'pa)_ We may also assume £<1, so that as before. This completes the proof of (*).
‘P Ig'IP
Bl <5y
|g_aj|P°l (lg-a;” +lg-2|"™)
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