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I. Introduction

In modern mathematics, especially in algebra, the structure of the (algebraic)
number system is very important.-

I am going to study the following structures :

1) field,
(2) vector space over a field,
(3) subspaces of a vector space,
(4) basis of a vector space
(especially, orthogonal basis),
(5) The properties of orthogonality and

(6) The convergence in a vector space and continuity of a linear map,
I. Main Theorems

§ 1. Vector space

A set K of numbers with the two operation (addition and multiplication) is called

a field if it has the following properties:
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(A) To every pair, @ and B, of K there corresponds a number a+ 5 in K, called

the sum of a and 8, in such a way that

(1) addition is commutative, a+8=f+a,
(2) addition is associative, (a+f)+r=a+(8+r),
(3) there exists a unique number 0 (called zero) such that a+o=a for every number

a of K, and

(4) to every number a there corresponds a unique number -a such that a+(-a)=0

(B) To every pair,« and 8, of K there corresponds a number a:8 in K, called
the multiplication of @ and 8, in such a way that

(1D multiplication is commutative, af=pa,

(2) multiplication is associative, a(fa)=(af)y,

(3) there exists a unique non-zero number 1 (called one) such that a-1=a for
every a of, K,and

(4) to every non-zero number @ of K, there corresponds a unique number a"(or%)

such that a-a '=1

(C) Multipltiplication is distributive with respect to addition, a{8+r)=af+ary.

Sometimes, the elements of K are called the scalars,

Thus, for example, the set of all rational numbers @ (with the ordinary definitions
of addition and multiplication) is a field, and the same is true of the set R of all

real numbers and the set C of all complex numbers.

An example of finite field:
Let Z be the set of all integers and p be a prime number, then the residue

classes Z/(p) (with ordinary addition and multiplication) is a field, which

has only p elements.

If S and S’ are sets, and if every element of S* is an element of S, then we‘say that
“S’ is a subset of S,”and denote by S‘CS;furthermore, S'%S, then S’ is called a
proper subset of S.
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On the Bases of a Vector Space 3

Let K,L te fields, and suppose that K is contained in L (i.e. that K is a subset
of L). Then we shall say that K is a subfield of L. Thus R is a subfield of C,and
Q is a subfield of R and C,

We now come to the basic concepts of this note. (We assume that a particular

field K is given.)

DEFINITION. A vector space is a set V of elements called vectors satisfying the

following axioms,
(A) To every pair, » and », of vectors in V there corresponds a unique vector
u+v, called the addition of # and », in such a way that

(1) addition is commutative, z+ov=v-+u,

(2) addition is associative, -+ (v+w)=Cu+v)+w,

(3) there exists in V a unique vector O (called the zero vector) such that
u+0=u for every vector z, and

(4) to every vector # in V there is a unique vector (-x) in V¥V such that

u+(-u)=0.

(B) To every pair,a and 4 (a is in K and « is in V) there corresponds a vector ax

in V (called the scalar multiplication) in such a way that

(1) multiplication by scalars is associative, a(fn)=(af)», and
(2) Yeu=u for every vector u.

(C) (1) multiplication by scalars is distributive with respect to vector addition,
alu+v)=autap, and
(2) multiplication by vectors is distributive with respect to scalar addition,
(a4 Pu=an+pu
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The relation between a vector space V and the underlying field K is usually

described by saying “V is a vector space over K”.

Thus, if K is the field R of real numbers, V is called a real vector space ;

similarly if K is @ or K is C, we speak of rational vector spaces or complex

vector spaces,

Examples of vector spaces

(1) Let C’(=C) be the set of all compex numbers ! if we interpret z+v and
ax as ordinary complex numerical addition and multiplication, C becomes

a complex vector space.

(2) Let C*(n=1,2, -+, 7) be the set of all n-tuples of ccmplex numbers.

If 2= (a, -, a) and v = (B, -, f.) are elements of C",we write (by

definition) i
U+V = (a;4By, e, aa+f,)
U = (yay, - , 7a)
0 = (0, ,0)

(-U) = (_ah......, —an)

It is easy to verify that C" is a complex vector space ; it is some times

called n-dimensional ccmplex coordinate space.

(3) A close relative of C* is R" of all n-tuples of real numbers, With the same
formal definitions of addition and scalar multiplication as for C*, except
that we consider only real scalars «, the space R® is a real vector space;

it will be called the n-dimensional coordinate space,

(4) Let F be the set of all continuous functions on the interval [0.1], then F

is a vector space over R.

DEFINITION. Let W be a subset of a vector space V, which satisfies the following

properties:
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(1) If #,v are elements of W, their sum #+v is also in W,
(2) If v is an element of W and a is an element of K, then av is also in W,
(3) The element O of V is also in W,

Then W is called a subspace of V, which is also a vector space.
The atove definition is equivalent to the

DEFINITON. A ncn-empty subset W of a vector space V is a subspace (or a
linear manifold) if for every #,v of W, their linecar combination

au+Bv

is contained in W.

Two special examples of subspaces are:

(1) The set {0} consisting of the zero vector only,

(2) The whole space V,

and the other subspaces are proper ones,

THEOREM 1. The intersection of any collection of subspaces is a subspéce.

PROOF, 1f we use an index i to tell apart the members of the collection, so

that the given subspaces of the vector space V are W;, let us write
W= 1 W,

Since every W, contains 0, so does W, and therefore W is not empty, If ¥
and v belong to W (that is, to all W,), their linear combination au+fv belongs
to all W;, and hence to W.

Therefore W is a subspace of V.

Q.E.D.
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§ 2. Linear Basis
DEFINITION. A finite set {;]} of vectors is linearly dependent if there exists a
corresponding set {#:} of scalars, not all zero, such that
iz v,=0
If, on the other hand, £ %;»;=0 implies that %;=0 for each i, the set (v} is linearly

independent.

In R? e,=(1,0,0), ,=(0,1,0), ¢5=(0,0,1) are linearly independent, However,
a=(1,0,0), 5=(0,1,0), ¢=(1,2,0) are linearly dependent.

For convention let us describe “iff” instead of “if and only if”.

THEOREM 2. The set of non-zero vectors {j, -, v,} are linearly dependent iff some

vy, 2<k<n,is a linear combination of the preceding ones.

PROOF. Let us suppose that the vectors {v;, *::v,} are linearly dependent, and let %
be the first integer between 2 and # for which {#, -, »,) are linearly dependent.
Then

for a suitable set of {x;}(not all zero)s;moreover, whatever the x’s, we can not
have x,=0, for then we should have a linear dependent relation among {vy, -, %s-1},

contrary to the definition of k. Hence
X=X Or=eee eyl

Dividing both sides by x,, we have
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,  which is a linear combination of preceding ones.

Q.E.D.

DEFINITION. A (linear) basis (or a coordirate system) in a vector space V is a set
B of linearly independent vectors such that every vector in V is a linear combination

of elements of B. A vector srace V is finite dimensional if it has a finite basis.

If ¢,=(1,0,0),6,=(0,1,0),6=(0,0,1), then B={e,, €, 6s}is a basis of R? which is
a 3-dimensional vector space.

However, let F te the set of all continuous functions on [-7,#], then F is a
vector space. If B={...,sin2t, sint, 1, cost, cos2t, ---}, then B is a basis of F,

which is an infinite-dimensional,

THEOREM 3. In a finite-dimersional vector space V, with basis {vy, **-, v,}), every

v of V is written in the form
v=2.zv;
, then the 'S are uniquely determined by ».

PROOF. If v = ZXyn:, then by subtracting we have
Zi(zi—ydvi=0

Since the ¢'s are linearly independent, this implies that X,—y,=0 for i=l, .-, n;

in other words, the %'s are the same as the corresponling ¥'s.

Q.E.D.

THEOREM 4, If V is a finite-dimensional vector space and if {vy,---,v.} is any set
of linearly independent vectors in V, then, unless the ¢’s already form a basis,
we can find vectors {vas+1,*-*, oa) so that the totality of the ¢'S,i.e. {v,, -, v, -0} is a
basis of V. In other words, every linearly independent set can be extended to a

basis.

PROOF. Since V is finite-dinrensional, it has a finite basis, say {#,, -, u,}.
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We consider the set S of vectors:

.

S={e1, -+, Ty 2y, *+=, 2a)

Let us apply Theorem 2 to this set several times in succession,
In the first place, (since the v'S are linear combinations of the #’s) the set S
is linearly independent. Hence, some vector of S is a linear combination of the

preceeding ones.
Let w, be the first such vector.
Since the #'s are linearly independent, w; is different from any
v;(i=1, =+, m),
so that ', is equal to scme #,, say wWi—uwu,.
We consider the new set S; of vectors:

S1={ry, o, Vb 1, 0, sy, Mgy, oo 2y)

Since {u,, -+, #x, **, %o} is a basis and we may express u, by means of {, **, vy, 111
#x.1}, we observe that every vector in V is a linear combination of vectors in S:. If
Sy is linearly independent, we are done. If S, is not linearly independent, we can
repeat the above procedure until the remaining set to be linearly independent. The
remaining set is the required basis which contains obviously the linearly independent
set{v,, -, va).

Q.E.D.

Let V be a vector space over a field K, and let B={z,, -, 1.} be a basis. If v is

any element of V, then the set

{01, -+, 0430}

is linearly dependent, Hence, the number cf a basis, which are linearly independent
in V and generates V, is very important.
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DEFINITION. The dimension of a vector space V is the number of elements in a

basis for V.

Remark. If the number of a basis of V is infinite, then the space V is called

infinite dimensional, and if finite, finite dimensional.

THECREM 5. The niumber of elements in 2ry basis of a finite dimensional space V

is the same as in any other basis.

FREOOF. The prcof of this Theorem is a slight refinement of the method used in

Theorem 4.

Let B={w,, -, 2,) and B'={zy, -, va} be two finite sets of vectors, and every vector
in V is a linear ccmbinaticn ¢f B (but not necessarily linearly independent), and

B’ are linearly independent (but not necessarily generates V)

That is, B generates V and B’ are independent in V. Let us consider the set S of

veetors:

S={r'm, 241, %2, -+, 2a}

Since every vector of V is a linear combination of B, S is linearly dependent.

Reasoning just as Thecrem 4, we cbtain a set S, of vectors:
S1={vm, 2y, o0, Unes, Unar, o0, #,)

S: has the sam= property to B,

Now we write v,-, in front cf the vectors of S, and apply the same argument.

Repeating m times in this way, we have the set
So={v1, vz, >+, V0", >+, w7},

where every ;' is some x, in B.

Hence, n=m,
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Consequently, if both B and B’ are bases (with the above two properties), then

n=m and m=n. Hence, m=n,

Q.E.D.

COROLLARY 1. An n-dimensional vector space V has a basis, which has just

# independent elements. And a set of # independent vectors in V forms a basis.

PROQF. The result is trivial frcm the above Theorem 4 and 5.
Q.E.D,

COROLLARY 2. Every set of n--1 vectors in an n-dimensional vector space V is
linearly dependent,

PROOF. Since a basis B of the #~dimensional vector space V has just # elements,

every vector of V is expressed as a linear combination of B, Hence, n+1 vectors are
linearly dependent,

Q.E.D,

As an application of the notion of linear basis, or coordinate system, we shall see
that every n-dimensional vector space V' over K is essentially the same as (is

isomorphic to) K",

DEFINITION. Let V and V’ be two vector spaces aver K. A linear mapping (map,
transformation)

FlV——my

is a mapping such that

Flau+Pv)=aF(u)+pF(v) (where u, v are in V)

If V'=V,we call the mapping F “an operator on V.”

— 340 —



On the Bases of a Vector Space 1

DEFINITION. Two vector spaces V and V’'(over the same field K) are isomorphic

if there is a one-to-one linear transformation between them.
THEOREM 6. Every #n-dimensional vector space V over a field K is isomorphic
to K°.
PROOF. Let {z,, -, 7.} be any basis in V.Each v in V can be written in the form
t=x10 T X202+ Xo0n,s

and we know that the scalars x;, -, x, are uniquely determined by ». We consider

the cne-lo-one correspondence

o~ (x4, %z, *, xa)

between V and K°. If .=%z,+++).tn, then

ap+ Bu={(ax,+ By v+ -+ (axa-t-B¥)o,

The above correspondence establishes the desired isomorphism.
Q.E.D,

Suppose that S is an arbitrary set of vectors (not necessarily a subspace) in a
vector space V. There certainly exist subspaces W; containing every element of
S (i.e., such that S C W’;). For example, the whole space V is such a subspace.

Let W be the intersecticn of all the subspaces containing S. By Theorem 1, W is

the smallest subspace ontaining S.

DEFINITION. Let S be a subset of a vector space V. The smallest subspace W
containing S is called the subspace generated (spanned) by S, and W is called the
span of S.

THEQOREM 7. If S is any set of vectors in a vector space V and if W is the span of

S, then W is the same as the set of all linear combinations of elements of S.
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PROOF. It is clear that a linear ccmbination of linear ccmbinations of elements
of S may again be written as a linear combination of elements of S. Hence the set
of all linear combinations of elements of S is a subspace containing S, and moreover,

this subspace must also contain W. On the other hand, W contains S and is a

subspace,

Hence, W contains all linear combinations of elements of S.(i.e,, If W=the span of

S, then the span of W=W),
Q.E.D.

THEOREM 8. If H and X are any two subspaces and W is the subspace spanded by
H and K together, then W is the same as the set of all vectors of the form

#+v with « of H and » of K.

PROOF. For #, 2, of H and vtz of K, let uy+o,=w, and #;+v,=w,, then
aw1+ﬁw2:a(1¢1+vl)+.B<llz+vz):(a141+ﬁuz> + (av,+Boy)

is in W (because, au,+Bu, is in H and av,+Pv, is in K).

Hence, W is a subspace of V.

Q.E.D.

We shall use the notation H+X for the subspace W spanned by H and K.
DEFINITION. A subspace K of a vector space is a complement of a subspace H if
HnK={0) and H+K=V.

THEOREM 9. A subspace W in an n~dimensional vector space V' is a vector space

of dimension <,

PROOF. Since every set cf #+1 vectors in V is linearly dependent, the same is

true in W,
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Hence, the number cof elements in each basis of W is <n,

Q.E.D,

From the above Theorem, We have a very essential

COROLLARY. Given any m-dimensional subspace W in an #n-dimensional vector
space V, we can find a beasis {¢1, -, my twsr, *1,} in V such that {p,, -, .} is a basis

of W.

PROOF. Since the dimension of W (WCV) is m, there is a basis {v1, -, va} of W,

Since {v), -**, rw) are linearly independent in 1, and so in V. By the above theorem
n=m,

If m=n, then there is nothing to talk about.

If m{n, then there is a vector v+ such that
Vme1 is not in W and vq4, is in V.

Let us consider a set
S = (o1, ", Unitns)

and the span of S;(W)).
However, dim V = dim W, (.e.,n=m+1).

Repeating the same process, we can finally get
So= {01, **, Uy Dms1, =0},

which is independent in V, and hence a basis of V.
Q.E.D.

§ 3. Orthogonality

Let us first inspect V=R If «=(x,, x,) and v=C, y:) are any two points (vectors)
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in R?, the usual fcrmula for the distance between » and v, or the length of the

segment joining # and 7z, is

vV Gy )t (- y)?
It is convenient to introduce the notation

” u ” = 1/ x1'+xz’

for the distance frcm # to the origin 0=(0.0).

In this notation the distance between # and v becomes
N —uvli-

Furthermore, the cosine of the angle between the vectors u and v is

an__xye . _Cu, 0D
Vilrx? Vylditag Hael| 1]

The important properties of (#,2), (considered as a numerical function of the pair

of vectors # and ») are the following cnes .

DEINITION. An inner product (or scalar product) in a (real or complex) vector
space is a (real or complex) valued function of the ordered pair of vectors # and v,
such that

) (u, )=, #)
(@) (ayu,+aguy, v)=a,Cuy, v)+aCatz, v)
(3) (u,2>=0 and (u, u)=0 iff 2=0.

An inner product space is a vector space with an inner product (scalar product).

We observe that in the case of real vector space, the conjugation in (1) may be

ignored. In any case, however, real or complex, (1) implies that (#,#) is always

positive real, so that the inequality in (3) makes sense. In an inner product space

we shall use the notation the length of a vector.
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DEFINITION. The number ll#]l = y(u, #) is called the norm (or the length) of
the vector .

A real inner product space is sometimes called a Euclidean space, and its complex
analogue is called a unitary space.

As an example of unitary space we consider C®: for #=(x,, -+, x,) and 2=(yy, -, ya),
(n, vDZZixi;

and, let F be the set of all continuous complex valued functions on [0,1],fand ¢ are
in F, then their inner product is

. H= f S gy a.

0
LEMMA 1. In a unitary space we have
Q) (u, aurva) = ay(u, v)+au, vs)
€y} Hazl|= [ a | [|2]].
PROOF. (1) (o, ayp,+a,u)= (a0 +a50,, 1)

=(evn, w)+(az, vy, )

=a(2y, ) +a (v, )

:i(vl, u)‘l'a;(l)zn u)
=a,(u, v,)+ax(u, v;)
(@) llaull’=(au, aw)=aa(u, )= | « | |l

Hence, Haul|= | a | [full.
Q.E.D,

1 suppose that the most important relation among the vectors of an inner product
space is orthogonality.

DEFINITION, The vectors # and » are called orthogonal (or perpendicular) if (z, »)=0,
T wo subspaces are called orthogonal if every vector in each

sutspace is crthcgcral
to every vector in the other subspace.

— 345 —



16 = ¥ A Al 34

—_

A set S of vectors is orthogonal if wkenever both # and » are in S it follows

that (z, v)=0.or (2, v) %0 according as uxkv or u=ko.

If for every #of S |l#|l=1, then the set is called orthonormal set. (In this case,

let S be finite, say S={u,, ---, #.}, we have (u;, #;)=0;;)

We call an orthonormal set ccmplete if it is not contained in any larger

orthonormal set.

LEMMA 2. An orthonormal set is linearly independent.

PROOF. If {v,, -, .} is any finite subset of an orthonormal set S, then
k
X a;v; = 0.
i=1

implies that

0=CQa;r;, v))=2a; 2, v;)=FYa;gi;=a;

Hence, a linear ccmbination of ¢’ s can vanish only if all of the coefficients vanish.
Q.E.D.

We need some notations. If W is any set of vectors in an inner product space V,

we denote by W™ the set of all vectors in V' that are orthogonal to every vector in
w.
LEMMA 3.W* is a subspace of V (whether W is a subspace or not), and W is in

W** which is the span of W,

PROOF. If W is the whole space V, there is nothing to talk about. If W is a

proper subset*then for every u of W, there exist v, v, in W*(W*CV) such that
(u,v)=0 and (z,v,)=0

Cu, av+Boy)=a(u, v,)+Blu, v.)=03

hence the fact that #,,v, are in W* implies ap,-+8v; is in W*,
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Therefore, W=+ is a subspace of V. Furthermore, W++ is a subspace of V' which

is perpendicular to W'+ Let » be in W, then # is in W+~ and hence
u is in (W+)+ f.e.,u is in Ws+

Hence, WCW=++,
Q.E.D.

THEOREM 10. (Bessel’s inequality)
If S={v,, -, v} is apny finite orthonormal set in an inner product space,if v is any

vector and if a;=(z,v;), then

Silail® =loll
The vector
v =v—2av;

is orthogonal to every »; and, consequently, to the subspace spanned by S.

PROOF. For the first assertion .

sl IE=',v")
={v-Za;, v-Zav;)
=(v, 1) —(v, Zaiv)—Saiv;, v)+Zaia;(w;, v;)
=l o |l *=Za& (o, vO—Zai(vi, )+ EZaag= || v || *—Faai—Taai+ T
=l o*{| —Zaia:
=llvll* =2 )ai|?

Hence, lloll?’=Z Z|a:il?
For the second assertion:
@, v)=-Zaw;, v:)=0,v)—Zai(v, ;)
=g;—Za;di;=a;—a;=0
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Hence, ¢’ is orthogonal to the span of S.

Q.E.D.

THEOREM 11. If S is any finite orthonormal set in an inner product space V,
the following six conditions on S are equivalent to each other, (dim V= »)
(1) The orthonormal set S is complete,
(2) If (v,v)=0 for i=1, -+ , #, then v=0,
(3) The subspace spanned by S is the whole space V.
(4 If v is in V, then v =2;(z, vdvi.
(5) If # and v are in V, then
G, 0) = ZiCr, v (i, 0.

(6) If v is in V, then
Holl2=2;) @, 0) | %

PROOF. Let us try to show (1)=2(2)=2(3)=24)=>B)=>6)=>(1).
Thus we first assume (1),
(1D=>(2). Let us show the ccntrapasitive case, i.e.,not(2)=not(l).

If (»,9)=0 for all { and v*0, then we may adjoin

to S ,and thus

is an orthonormal set larger than S.
Hence, S is not complete,

Since the contrapcsitive propcsition of true one is true, (1)=>(2)

(2)=(3). Let us show that the contrapositive proposition of (2)=(3) is true.
i.e, not(3)=>not(2). If there is a » in V that is not a linear combination of the
v;, then by Theorem 10,

D' =v—27; (U, v;)v;
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is different from 0 and orthogonal to each »;. Hence
vx 2, (v, )0
Hence, (2)=(3) is right.
(3)=>04). If every v has the form v = Zay»;, then
(v, v)=Cav;, v:)=2a;(v;, v:.)=2a;6;=a.
Hence, v = 2i(v,v)vi.
(=0G). If u = Zapi and v = 2Bv;, with
a=0e, v), Bi=(v.v), .
then
(e, )= aiv;,Eﬁjvj):ZZ'a;,B_j(vi, v;)
=33 ail?jaii ZZ'aaﬁ—.-
=Z(u, v:) (2, v:)=2(u, v)(wi, ).
(5)=>(6). Let u=v, then
(o, =Ziaa=2; | a; | 2=2; | (v, 0:) |2

(6)=(1).1f S is contained in a larger orthonormal set and (6) holds, say if v, is

orthogonal to each »; (i.e., 7, is not in S), then
”%”2 = Zl(l'mvi) I = 202 = 0)

so that »,—0. Hence, S is complete.

Q.E.D.

THEOREM 12, (Schwarz's inequality)

If » and v are vectors in an inner product space, then
1Guo) | =lluli ol

PROOF. 1f {#|=0 orllv|l=0, then both sides vanish,
If bothl#(l %0 and |l#]i %0, then

l au—pv || *=(au—Bo, an—Pv) =0
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However,

Nau—Bo || *=aa(u, )—aP(u, v)—palv, u)+ BB v, v)
= | a | *(u, .)—apB(u, v)—Balu,v)+ | B | (v, v)
= la|*llull*—aplu, )—aplu, o)+ | 1 211 0]] 2
Now, let us put a=(,»)=1lv1l? and B =(«u,v), then
Nau—pBoll*=la|? llull*—aB-B—a-8-8+ | B | *a
=lal?llull*~alg|?
=leal?lall’*~al|g]?
SlolltHall?>—=loll2| G, o) | =0

Dividing both sides byl ¢ |} 2, we have

Noll2llal2=lu0)]|?

Q.E.D.

The Schwarz’s inequality has important properties:

(1) In any inner product space we define the distance 3x, ») between two vectors

u and v by

0Cu, )= ll—v || = v (u—v, u—0)

In order for & to deserve distance (metric), it should have the following three

properties:
(1) 6Cu,v) = 8(v, w),
(2) 6(u,v) = 05 3(w,v) = 0 iff u=v.
(3) 6(u,v) < 6Cu, w)+3Cw,v).

Since the above three results are obvious, we ommit the proof.

(2) In the n-dimensional Euclidean space R®, the expression

(u, )

el ol
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gives the ccsine of the angle between % and ».
The schwarz’s inequality in this case shows that the absolute value of the

cosine of a real angle is less than or equal to 1.

(3) In the space F (which is the set of all ccmplex valued continuous functions

on the interval [ 0,11 ), the schwarz inequality becomes

1 2 o1 o1

| = | FOIR B INPOILY

THEOREM 13. If V is an #»-dimensicnal inner product space, then there exist

a complete orthonormal set in V, and every ccmplete orthonormal set in V contains

exactly » elements.

PROOQOF. From the corollary 1 of theorem 5, there is a basis B={u;, u;, -+, u,} of V,
consisting of » independent elements. By the Gram-Schmidt orthogonalization,

we have an orthogonal basis

B, = (v, -, 0.}
of V,and putting

vi——:ei
i

o l)

we have a basis
B, = (e, e},

which is an orthonormal basis of V.
By the corollary 2 of Theorem 5,and Theorem 11, the rest follows.
Q.E.D.

APPENDIX (GRAM-SCHMIDT ORTHOGONALIZATION)

Let V be an n-dimensional vector space, then there is a basis B, which has
n-independent elements and {w,, -+, w,} of B are orthogonal set:
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B - {wlr oy, Wy, Oms1, vl} (”sz-

If »=m, then there is nothing to talk about.
If #)m, then let us make a subspace Wy, of V, which is generated by {w,, .-,

Way Uns1}.

Let us subtract from v,,, its projection among {w,, -, w_}. Thus let

¢, ::_..(v'"“;wL e, Cp=

(vn+lv wm)
{w, w) !

wn. u’m)

and let
wm+l:Un+l_(clwl +eeet cmmev

then (for 1=<j<m)
Wasr, )= (On1—(Zew), w;)
=@ar1, w;)—Zi¢:(w;, w;)
=@arr, w)—c; (w;, w;)

o , (vm+h wi) . ) i

=Wms1, ¥;) —W (w;, ;)
=0.

Hence, w,., is perpendicular to (w1, ==+, w,}.

Furthermore, w,,,2:0, and
OV =Wy4 +C1’01+ ot +cm’0m:

hence ».., lies in the span of {w,, -, Wa, War1} (F.€,in Woy)).

Hence {w,, «--,w,, w.,,} is an orthogonal basis of W,,,.

We can now proceed by induction, showing that the space W..s generated by

{1, -+, wa, sy, -, va, s} has an orthogonal basis
B:(wlv 2ty Way Wi, **°, wn+s}
with s = 1,2, .+, n-m

Q.E.D,
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Suppose V be a vector space over the field K. LetU and W be subspaces of V.

The sum of U" and 1 is the subset of V' consisting of all the sums z#+w» with » in U

and  in W.

THEOREM 14. Let U and W be subspaces of V. The sum U+W (the sum of U and

W) is a vector space.

PROOF. If u,, . are in U and «,,w, are in W, then
aCaty 4+, + B8y +wy) = (e, + Buy) +- (aun + 8w2)
lies in U+W, since am~3u; is in U and aw,+8w, is in W,
Q.E.D.

COROLLARY. Let V be a vector space over K, and let W; be any subspaces of

V. then arbitrary finite sum of W; is a subspace of V' (i.e. 2%.,W: is a subspace
of V).

PROOF. The result is obvious from the Theorem.
Q.E.D.

DIFINITION. We now consider the case of U+W=V and U n W=(0}, then

we call that the sum is direct sum of U and W, denoting

V = UDW.

THEOREM 14. If W is any subspace of a finite-dimensional inner product space
V, then V is the direct sum of W and W', and W **=W,

PROOF. Let B = {9, 1;, -, va} be an orthonormal set that is complete in W, and let
v te eny vectcr in V, we may write w=2a;, where a;=(v, ).
(i.e. w is the projection of v among (o, -, va))
1t follows form Theorem 10, that # = r—w is in W*,so that » is the sum of two
vectors, v = u+w, with # in W* and w in W. Hence, WNW*={0}.
(Because, if v is in WNW*, then v, isin W and , is in W, hence (T, Vo) = 1y 12==0),
Therefore, V = WEHRW™*.
We observe that in the decomposition v=u+w,
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We have

(o, w)=Cu+w, w)=Cu, w)+(w, w)=0+ lw || *= lw |3,
and, similarly,

(0, 0)=Cutw, u)=Cu, w)+(w, )=l u | 240 = 2|2

Hence, if v is in W**, then » + # (« is in W+) implies {l# 112 = 0, so that v is
inW (G.eW'*CW). And by Lemma 3 WCW++, we have
W=Ww**,
Q.E.D

§4. Continuity of a linear map

Let us consider the convergence problems that arise in an inner product space.

DEFINITION. A sequence {1} of vectors in V converges to a vector v in V if

fo,.—o |l =0 as n—00,

and we denote lim 7z, = o,
n—-)OO

Remark : we shall write N for the dimension of a finite-demensional vector space,

in order to reserve » for the dummy variable in limiting processes.

THEOREM 15. Let V be a finite-dimensional vector space over K. Then the
following properties are equivalent :
) llga—2ll=0 as n-ow

(2) (wa-v, ¥)—0 as n—oo for each fixed # in V

PROOF. If (1) is true, then we have for every u, by Schwarz's inequality
| v, ) | Sllo~vll-llull-0 as n—ooo
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Hence, (1)=>(2).
Conversely, assume (2).

Let {e;, ¢, -+, en} be an orthonormal basis in V, then by theorem 11,
l [ et 2 l 2:21 I Cvn_vvei) l ZéNal'

where 3>=Max{ | (v,-0,¢,) | 2}

Since 3 is arbitrary, || p,-v, || —0.

Q.E.D,

THEOREM 16. (Cauchy's condition for sequences)
Let V be a finite-dimensional inner product space with the metric defined by

the norm, then V is complete (i.e. every Cauchy sequence in V converges).
PROOF. “ Let {r,) te a sequence in V such that
| Da-0. 1l > 0 as m, n—oo ”
is equivalent to “given €0, there is an integer p such that np and m}p implies
| ou—v, [ <e 7

Suppose first that lim o, = v, then there is an integer P such that{[e,-v|l <e/2,
71— 00
for m)p.

But we have
loa—2, Il = || (a—0)+(—p) Il < Noa—oll + llo,—vll s

so that if m and # are both larger than p, it follows that Hoa—vll <e/2, [loa—v]]
< &/2, which implies

o — 2,1l e,

Since ¢ is arbitrary, || v.—uv, || —0,
Conversely, let us suppose the Cauchy condition holds. Let S te the sequence {z,}.
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If S is finite, then all except a finite number of terms v, must be equal and
lim », will then exist and can be equal to this common value.

If S is infinite, the Cauchy condition implies that S is bounded.

—THE PROOF OF BOUNDEDNESS—
If || 5u-v, 1l <¢ and M=Max (I, |, llzll}, then
1oa ll =1l (Gam2)+0ull <1l 2a-2a 1l + 1 24 ll

(E + M

Since M+e is finite (because # is fixed), {z.} is bounded,

By the Bolzano-Weierstrass theorem, the sequence must have an accumulation

point ,say ». Let us assume that the accumulation points be v and ¢/, then for

some m,n ) p,

oa-v 11 < &/3, a2l < /3, lva—vall € €/3
and hence

[|o-2" 1| = i (0-va) + Do)+ (a2 ) ||

< Nl va-t || + 10, 1| + || 02-0" 11Ke/3+¢/3+¢€/3=¢

Hence, the accumulation point is uniquely determined.
Q.E.D.

The metric properties of vectors have certain important implications for the metric

properties of linear transformations.

DEFINITION. A linear transformation A on an inner product space V is bounded
if there exists a constant M such that || Avil =Mllo|l for every vector v in V,

The greatest lower bound of all constants M with this property is called the

norm (or bound) of A and is denoted by NAH.

Hence, the norm of A is
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NAN=dnf M: ]l Al < Mllvll for all » in V}

and the notion of toundedness is closely connected with the notion of continuity.

THEOREM 17. Let A te a linecer trznsformaticn of V' and if A be bounded,

then A is (uniform) centinuous on V,

PROOF. If || A}l =0, then A must be zero mapping. Hence,

1 Az-Avll = | ACe-0) 1] < HAH vl =0 e (forll u-vli (&)
implies that A is continuous.

If ||All %0, then for scme positive numker ¢, by writting é=¢/ |l All,
lze-v )i (8 implies

NAu-Avil = 1AGe-) I S WA luv I ALl -3

. E

=HAl — 5= —=
‘ ITAT

Hence, A is (vniformly) continuous on V.

Q.E.D.

THEOREM 18. Every linear transformation on a finite-demensional inner product

space is bounded. (and hence, continuous).

PROOF. Suppose that A is a linear transfornation on V and let {er, -, en} be

an orthonormal basis in V, and write

M = Max {ll Ae/ll, I| Ae, |, -, || Aen ]},

Since an arbitrary vector ¥ may be written in the form v=2(v,¢)e; by Theorem
11.
We obtain, applying the schwarz inequality and remembering that || e; (] =1,
It Avll =1 A(Zi(o,ede) Il = Il Zi(o, e Ae; |l

=i | (ve) | lAe | =2 | (n,e) | M

=M Zi| (e | =M (S 110 lleill }

=Mlloi| N=M¥N| vl
Hence, |lAvll <MN |lv]}.
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In other words, MN is a bound of A.

Therefore, a lincar map A is bounded,

Q.E.D.

Caution : If the underlying vector space V is infinite dimensional, we can not

asscrt that cvery lincar map is bounded,

Conclusions

We have cbserved varicus properties of a vector space and basis of a vector space,
especially the orthogonal basis,
By some modification, we can always have an orthogonal (and hence,an orthonormal)
basis of the vector space,
The norm of a vector is nothing but the length of the vector, however, the norm
of a linear transformation is (by definition) just its bound.
The main results of this note are, I suppose,
(1) We can always have an orthonomal basis in the vector space V.
(2) Every n-dimensional vector space V over a field X is isomorphic to K".
(3) THEOREM 11, 12, and 14 are very interesting
(4) The vector space over a field K, with the metric defined by norm is

complete, and

(5) Every bounded linear transfornation is (uniformly) continuous on V.,
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Vector Mo ol %4

2 E A

" Fatoll4 vector F] ol B % FaA Hz gieh o] FRAA AA: o

& A4EE 248 2geh

43 Y vector FollE KT A st =4 EFASHTL 5L A2 WY A
ceq AaAS A% 5 dos UdE AgFozd A3 Aol AdE Hud A
ow Zolg Ade AW AY (norm) o2 A=Y,

(1) n38  vector EF7E nAY FI F A3 5ol
(2) #& 2 vector FAolAL AFHE A2 11, 12, 14 Sol4 ThFgn
(3) Vector Z7tell % 9 (Cauchy sequence) & =45t g 3o
(4) Aol normE A sle) AF A% A5 A AAE <A w9k,
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