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I . Introduction

Consider the following integer linear programming problem;
maximize f=cx subject to AX<b, X2 0, INtEers. «-sesesereesssssssssssassemsssuassesesesscusanes (P)

Assume the optimal solution to this ILP problem exists. Think of the relaxed LP problem
where the integrality condition is relaxed. Let x' be the optimal solution to the relaxed LP
problem, ' = cx’

As Fig. 1 conspires, it is fairly likely that some integer— valued vertices of the size—one
cube which contains x inside are feasible. One of them would have the highest objective
value. Let’s call this point a “near—optimal solution in this cube”, and denote it by x*. x*

may happen to be the optimal solution to the original ILP problem or have an objective

1) AAdE Adsz
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Fig. 1 X1

value close to the optimal value. As a matter of course, it is also possible none of the vertex
1s feasible.

[I. Terminologies and notations

x'=r—optimal solution: optimal solution to the relaxed problem,

x**=optimal solution: optimal solution to the original ILP problem,

x*=n—optimal solution: the best solution to the original ILP problem among the solution

points inside a specified neighborhood.

NI1(x")=the first neighborhood of x": the set of points whose i—th element has the value [ x
Tor[x] +1,

N2( x")=the second neighborhood of x": the set of points x with xj = [xj] —1, [ xj'], [ xj]
+1, or [xj] +2,

r— feasible region: set of feasible solution points to the relaxed LP problem,

[ xj'] =the largest integer < x|

xi'=[xj]+ej where 0 < ej < 1,

[x] =[x, [}, 7 - -« xn)"
e=(el, &2 - -, e)
1=(1,1,- - -,1)"

y :(Yh yZy oy, yn)'r Where yj = 0—1 Variable.
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Now we can use the following short expressions.

x=[x]+e

Ni(x)={x | x=[x]+y}

N x)={x | x=[x] =14y, +2y,+3y;}.

In case of 2—dimensional points, neighborhoods of x' can be represented as shown in Fig.2
and 3. Because we are interested only in the neighborhoods of x', dropping off (x') from
the notations, Ni(x') or Ny(x'), will cause no confusion. Also, N may be used as a short
notation of N1 or Nk for any k.

X2 ‘ X2 : Na(x")
Ni(x"
\\
Xl’
xl’
X1 X1
Fig. 2 Fig. 3

IlI. Reduction to Binary Problems

It seems sensible to try to search for x* in N, first. In other words, we are looking for the
best feasible solution to the original ILP problem (P) among the points x= [x]+yv.
Therefore, search for x* in N, results in the problem;

maximize f =cx=c([ xT+y)=c x] +cy
subject to Ax=A([x]+vy)=a x]+Ay <b.
Since [ xX'] is s constant vector in this problem, we get the following problem;
maximize SECY  etreetereetrestiscnittiiiitiitittetrer sttt e se sttt s st st s n et aes (B))
subject to Ay<b where b =b— A[ xr]
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This problem is amazingly similar to the original problem. Non— binary integer variables i-
n the original problem is substituted by binary variables. All the parameters moved into thi-
s derived problem unchanged except b. Calculating b’ might not be computationally burdens-
ome. If we find the optimal solution y* to the problem (Bl ), our desired near optimal solut-
ion will be;
x* =[x]+y* and f*=d x] +cy*
Similarly, search for x* in N; results in the problem;
MAXIMIZE f SCY) + 20y, 3CY; reoreeereeresssessantorsanmassestnntnntesssnsneressessessssrssses (B2)
subject to Ayl +2Ay,+3Ay;<b where b=b—A([x]—1)
Provided the optimal solution y1*, y2* to problem ( B,) is found,
X*=[xr] —1+y*+2y,* +3y,*
f*=c([x]—1+y*+2y,* +3y;*).
Note that problem (B;) has 3n variables and m constraints.

V. Properties of the neighborhood

We understand that the solution method for binary problems is well established, and is co-
mputationally much less burdensome than that for non—binary ILP problems is. Therefore,
we can turn to the problem (B,) as a quick way to obtaining an approximate optimal
solution to our original problem (P).

But, as pointed out at the outset, we cannot remove the possihility that N, fails to contai-
n any feasible solution. Also, there’s no guarantee x*=x**. From theoretical point of view,
these two kinds of problems cannot be a source of nuisance because we can always find x*
=x"* in N by extending the size of N large enough. But, extending the size of N gets comp-
utationally unattractive very quickly as the number of variables increases. We need to utiliz-
e the properties of neighborhood which determine the capability of neighborhood to contain f-
easible solutions with high objective values.

Generally speaking, the values of parameters in the problem P play all the role in determ-
ining the above—mentioned capability of the neighborhood. We also know certain structure-
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s of the values of parameters determine the geographical properties of the r—feasible reg-
ion and the plane associated with some value of the objective function, which in their turns,
determine the capability of the neighborhood.

Now, we need more definitions for a concise explanation.
Objective plane ={x | cx= f for a certain value of f}
Type I failure: the event that the concerned neighborhood doesn’t contain any feasible solu-
tion,
Type 1l failure: the event that x* * x**.
The terms “Type I success” and “Type II success’ can be used to express the complementa-

ry events.

4.1 Factors determining Type | failures
4.1.1. Location of xr relative to integer points

If the optimal corner point xr lies so that ej = 0 for some j, the possibility of Type [ failu-
re would be higher than otherwise.

X2

Fig. 4 X1
4.12. Angle of the r—{feasible region at x'
If there’s a pair of binding constraints which make an acute angle of relaxed feasible re-

gion, the possibility of type I failure becomes high. (Only binding constraints are related to t-

he angle at x')
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X2

" Fig. 5 X
4.1.3. Thickness of r—feasible region at x'

If r—feasible region is thin at xr with respect to some constraint plane, then possibilit-

y of type I failure increases.
X2

Fig. 6 X1
Here, thickness means the distance from x' to constraint plane along the normal line to th-

at plane. ( Only nonbinding constraints are related with thickness.)

4.2 Factors determining type Il failure

— Parallelity of the objective plane with respect to a constraint plane —
A necessary condition for a large discrepancy between xj** and xj* is that the objective p-
lane s almost parallel to some constraint plane(s).

Above statement is derived from geometrical insights. Analytical proof seems to be 1mpos-
sible because, after all, both type of failure is determined by the value of parameters. Never-
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X2

Fig. 7 X1

theless, above considerations lead to the rules which will be used to raise the possibility of b-
oth type of success of the neighborhood.

V. The Heuristic to Raise the Success of Neighborhood

5.1. Shift of Neighborhood

X2

(a) X1
Fig. 8

Step 1 : Find n adjacent corner pointsd, k=1, - -+ -, n
Step 2 : Compare with min,{dj*} and max.{dj*}
Step 3: Search for xj* among [xj]+1 and [ xj]1+2 if xj’ < min{dj‘}
Search for xj* among [ xj] and [ xj]—1 if xj > max.{ dj'}
Because r—feasible region is a convex set, xj' will be the smallest feasible value of x) if all
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the adjacent points lie to the direction of greater xj, i. e. xy< dj* Vk, ie, xj< min.{djk).
There's no use of searching for x* where xj <xj. Reversed case can be proved similarly.

The definition of neighborhood set earlier no longer holds. But we'd like to retain the term-
inology “neighborhood” with the adjective “shifted” in front of it.

The benefit of shifting neighborhood region is in increasing the chance of type I success r
ather than in saving efforts which might be spent on the search in a wrong region otherwise.
This shifting alleviates the trouble caused by acute angles at x°

This rule becomes completely ineffective when all the coefficients in binding constraints
are >0, since every pair of constraints form an obtuse angle at x* in such situations.

Modifications of the binary problem due to shifting
The points x to search among becomes
x = [x]+0+y
where ¢ = (41, ..., én)"
withd =1, if x)’ < dj* Vk

~1,if xj = djk Vk
0, otherwise
So, we get the problem for the search in N, as;
maximize f = cy
subject to Ay <b” where b"=b—A([x] +4)

9.2. Removal of redundant constraints (Rule 2)

Drop off the nonbinding constraint, if iezﬁau < b; = (b—A[x"

where Jf = {(jla; > 0}
Proof 1

I
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= 2 a;y; + 2 ay; < b
e jie],

> Saw, = a'v = (A)< b Vy

That is, the constraint i is always satisfied if ).Ezjx,aiiyi <b.
Proof 2
Consider Fig. 9. Let x™ = the point in N, which is most likely to dissatisfy constraint 1 and
x' = the foot of the line drawn from x' perpendicularly to get g.— plane. Then, from geome-

trical insight, we know that.

< xl = Al < x] = ] = [x]].
L A—
> x] =l x] = = [x]] + L.
X2
T
X

X1

Fig. 9
Therefore, x™ = [ x'] +dwhere 6=(4,, -+, 8)" with8, = 1,if x/ > x] 0, otherwise
Since both x'— x' and a' are perpendicular to g— plane, x—x'//a'
Hence X' — X' =K( @) +errersersessersesnssessnsmersssssnsssasmansssssssomsssssssosssssnssssassessassesseasesscesses (] )
Since X' is On the @ —plane, a'x/=h ++eeeseessersssssesmensenseessesssssssemmsamsamssisssssssenssssssssssisnes ()
Fome (1) and (2), a"(&(a")T + x0) = b;
bi—a'x" S;

TS DT T aiasT > Usince $p0, ala)T > 0

From (1), we Inow that x'—x' has the same direction as (a')', since k>0.
a; >0 o xi-x/>0 e §=I,

a; <0 & xfl—x/ <0 & §=0.
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By definition of x, constraint i will be inactive if %™ < &,
= a([x1+8) <b;
= a8 < b—a'llxl = (b—AlxD: = b

asd = Zfaij(l) + gjﬁ_aﬁ(o) = ’_Ezj*au

i<l
because lg,asb. implies constraint 1 is inactive

Implication of Rule 2.

As geometrical proof shows, rule 2 is related with the thickness of r—feasible region at
x". If r—feasible region is thick enough at x" with respect to a nonbinding constraint i, the
whole neighborhood will lie in the area satisfying constraint i. We can stop paying
attention to constraint 1 by removing it.

5.3. Reduction of the number of vanables (Rule 3)
Set y; = 01if a; > b, — Z}aﬁ for somei,
. JEJ;
Set y; = 1 if ay < — (b~ ;__aﬁ) for some1.
IEJ;

X2

yz =

y2 =

y1i=0 yi=1
Fig. 10

It's possible one side of the neighborhood cube lies out of the r—feasible region by going
beyond a certain constraint plane. In each cases, there’s no reason to waste effort in

searching for x* among the points on this side because it is sure that x* exists on the
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opposite side. So, we can fix the value of the variable which determine this pair of sides. In
Fig. 10, we can set y, = 0 since the whole side determined by y, = 1 lies bevond g1 — plane.
We can set y, = 0 for a similar reason.

Derivation of the rule
Set y, =~ 0, if (1) the best y with y, =1 violates constraint i, and (2) setting vk = 0
helps y satisfy constraint 1. From (2), we know a, should be>0. Constraint 1 can be
rewritten in the form of axv. + )_E;i*kainj + jezjl_ainj < b;. Obviously, the best y
will be such that y = 0 j*k V j€J and y = 1V jeJt.

So, we can set y, =~ 0 if (1) the best y with y, =1 violates constraint i and (2) setting
v« =0 helps y satisfy constraint i. From (2). a, should be > 0. Constraint i can be
rewritten in the form of

awrt 2 awit Tay< b,
Obviously, the best y will be such that
vi =0 j#kV jeJf and y; = 1 Vielt

So, we can set yv = 0 if a, + Z}'a,}- > b,
1=/i
Therefore az > b; + 2*0‘; for some i.
=T A

Similarly, set y, =1, if (1) the best y with violates constraint i and (2) setting y, =1

helps y satisfy constraint i. From (2) a, should be < 0. Constraint i can be expressed as

aaye + g},aay,f > aw; < b.

jel itk
The best y is suchthat y,=0 ¥ j€Ji and v; = 1 V j*k, €]
So, we can set y, = 1 if ),E];j*kaii > b;

e, 2a; —az ) b,
IS M

i.e, a; < —(b;— ;aﬁ) for some i.
IE);
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5.4. Choice of the size of the neighborhood

All the explanations and rules presented thus far on the use of N, are applicable to the se-
arch in N.. The only difference is the heavier computational burden for the search in a large-
r neighborhood. We tried to raise the capability of the neighborhood in an attempt to make N,
more satisfactory. But use of N, may become inevitable sometimes. We can consider searchi-
ng in an even larger neighborhood. The decision on the size of N may be determined by the
properties of the problem and the user’s attitude toward the capability to hold a near optima-
] solution and computational burden related to the neighborhoods of different size.

It would not be unusual our original ILP problem itself contains few binary variables.
Such variables would reduce the advantage of problem ( B,) over problem (P). Anyhow, we
don’t need to spread out the region to be searched, since x,**=0 or 1 obviously. Therefore,
if we decide to use N, for the ILP problem with a few binary variables, then the neighborho-
od to be searched will have the shape of rectangular cube instead of square cube.

It is also possible that a few variables have relatively large rates of contribution to the
objective value. For such variables, we may want to search for the near—optimal value
over a rather broad range of their integer values. Once again, we don't need to stick to
square— cube neighborhood region.

5.5. Proper Sequence of Decisions

The appropriate sequence of decisions would be;
a. decision on the size of N
b. decision on the location of N (Rule 1)
c. removal of inactive constraints (Rule 2)

d. reduction of the number of variables { Rule 3)
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VI. Evaluation of the Neighborhood Search Method

The usefulness of the Neighborhood Search Method cannot be commented on without the
information on the possibility of type I and II successes of the neighborhood. We believe
that only experience can provide this information. But we can tell roughly about the
possibilities of both types of successes in case of a certain category of problems.

1) Type—I Failure

As stated earlier, the chance of type—1 failure is dependent on the location of the relaxed
solution x', and the angles and thickness of r—feasible region at x. Shifting the
neighborhood will reduce the possibility of type I failure related to the unfortunate location

of X',

X1

Fig. 11

As shown in Fig. 11(a), we don’t need to worry about the location of x' if (1) xj' is not
an extreme feasible value of xj for all j and (2) all the adjoint points lie outside N. Of
course, Rule 1 doesn't lead to a shift of N in this situation. As shown in Fig. 11(b), the fact
that xJ' is not an extreme feasible value of xj for all j doesn’'t guarantee that N contains at
least a feasible solution. As shown in Fig. 11(c), shifting N helps N contain a feasible
integer solution. But shifting N cannot remove the chance of type I failure completely (See
Fig. 11(d)). After all, shifting N helps a lot unless r— feasible region is acute at xr and the

r— feasible region is directioned to unfortunately avoid integer points in N.
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The thickness of r—feasible region at xr is utilized to render a rule about the removal of
inactive constraints. But the hazard of type ! failure due to thinness is not cured. We just
rely on luck.

The angles of r—feasible region formed by binding constraints are calculated by the

formula JighT
Ha'll - 1a¥ll
where 8,= the angle formed by constraint i and k.

CcOos 6,‘;3 =

Notes: a)0 <cosf.<1 & constraint i and k form an obtuse angle.

b) cosf<1 ¢ constraint 1 and k form an perpendicular angle.

¢) —1<cos#,<0 & constraint i and k form an acute angle.

d)cost,=0 or 1 is incompatible with x" because two parallel constraints cannot be

binding at the same time.
Some problems such as transformation problems have only positive constraint coefficients

making the angle at xr obtuse. For such problems, the possibility of type I success is likely
to be high

2) Type |l Failure

Let’s all xj to be stable if x;*—x**, and unstable if | x*—x** | >>0. We know that as
the objective plane comes to be more parallel to axis x, X, becomes more unstable and
chance of type I failure increases. Let & be the angle between axis j and the normal line

to the objective plane. The

w0s 8; = .Ce, = G

R TP T P TR [Te]
Therefore, Cj/lICIl — 0, i. e, §; = /2 implies
f—plane gets more parallel to axis ).

= x; becomes more unstable

= chance of type II failure increases.
On the contrary, C, = 0Vk+j= |Ci/lICl=1 = f-plane L axis j = x
becomes stable.



Neighborhood Search Method for Non—binary ILP Problem 267

As the number of variables increases, the weight of Cj relative to | C| tends to
decreases making xj more and more unstable. So, we can generally say that the chance of
type II failure increases as the size of the problem increases. But, the sacrifice caused by
accepting x* as an approximation to x** can sometimes be ignored considering the small

contribution of xj to be objective value, |Cjl/IICII.

3) Test for the Optimality of x*

Step 1: Add the constraint Cx >= f* = Cx* to problem ( P). Remove all the nonbinding
constraints in the final tableau.

Step 2: Find all the adjoint corner points of xr which bump into the plane Cx = f*. Call
themct =1, «-, n.

Step 3: Think of the set

Z = {zlz=(2,2n)7, z; integer min {d*, xY) < z; < max ,{df, x¥))
If Z C N, then x" = x™

We know x** should satisfy the condition Cx**>= Cx* = f*. So, Cx >= f* forms a
constraint on the set of candidate points for x**. As illustrated in Fig. 12, x** must lie in
the cross—shaded region (polygon BCDFG), and thus, if more loosely confined, in the
shaded region( AACE). The region represented by AACE is the polytope with vertex x'
and d, k=1, *, n.
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X1

Therefore x** should satisfy miny {df, xf} < x]° < max J{d% xf} for j = 1, ,n.
If all the integer points satisfying this condition are located in N, then x* = x** because x*
is the best integer feasible point in N (Note: This test criterion may be powerful. It is only
of theoretical interest)

7. Conclusion

As shown already, we can predict that the chance of type II failure increases as the
number of variables increases. Therefore, we better use the Neighborhood Search Method as
a quick method to obtain an approximate optimal solution x* and f*. If f* is close enough to
fr, we can either (1) take x* as our final decision or {2) use f* as the initial lower bound
for the branch and bound method.

It sounds very good. But final evaluation should be reserved until a fair amount of
experience produces relevant statistics regarding the type I and II successes and on the
power of the rules which consist a part of this method. Statistics of interest should include
(1) ratio of computation time taken by the solution of problem B, to that corresponding to
problem P, (2) relative frequency of both type I and II success, and (3) the ratio of f*/f**
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