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In the theory of fibrations, the covering homotopy property, the
Hurewicz fibration, the Dold fibration and the fibre homotopy equiv-
alence are baisically important. In this case, the notion of exponen-
tial laws play central role. Many researchers have been studied these
properties in compactly generated spaces and quasi-topological spaces.
However, in a structural point of view it has not been completely suc-
cessful to find a convenient category of fibred spaces. The main reason
was that the category of compactly generated spaces is not a quasito-
pos and quasi-topological spaces do not form a category, but a quasi-
category. So, it is natural to study these properties in convergence
spaces which is a catesian closed.

On the other hand, the theory of fibration have been developed in the
situation of having variable base spaces. In particular, given fibrations
p:X — Aq:Y — B the construction and properties of a function
space C4p(X,Y) and an associated fibration p-¢ : Cap(X, Y)— AxB
are mainly concerned. In this case also fibrewise exponential laws play
crucial role.

In this paper, we introduce a function space structure which will
allow us fibrewise exponential laws in convergence spaces over variable
base spaces. And using these exponential laws, we obtain some 1mpor-
tant results on fibration comparing with known results.
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1. Preliminaries

In the theory of fibrations, the covering homotopy property, the
Hurewicz fibration, the Dold fibration and the fibre homotopy equiva-
lence are baisically important. In this case, the notion of exponential
laws play central role. So far, compactly generated spaces and quasi-
topological spaces have been main objectives for these studies. Howev-
er, in a structural point of view it has not been completely successful to
find a convenient category of fibred spaces. The main reason was that
the category of compactly generated spaces is not a quasitopos and
quasi-topological spaces do not form a category, but a quasi-category.
So, it is natural to consider the category of convergence spaces which
1s a catesian closed. With this consideration, in 1992, Min and Lee [17]
obtained natural exponential laws in the category of convergence spaces
over a base B.

On the other hand, the theory of fibration have been developed in the
situation of having variable base spaces. In particular, given fibrations
p:X — Aq:Y — B the construction and properties of a function
space C4p(X,Y’) and an associated fibration p-q : C4p(X,Y) - Ax B
are mainly concerned. In this case also fibrewise exponential laws play
crucial role [3-9,18,19].

In this paper, we introduce a function space structure which will
allow us fibrewise exponential laws in convergence spaces over variable
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base spaces. And using these exponential laws, we obtain some impor-
tant results on fibration comparing with known results.

Let p: X — A and ¢ : Y — B be continuous maps where X,Y". 4
and B are convergence spaces. A fibre preserving map from p to ¢ is a
pair (f1, fo) of continuous maps f; : X — Y and fo : A — B such that
go fi = fo op, i.e., the following diagram

h

X — Y

ST
A—— B
fo
commutes. We write this map by (fi, fo) :p — ¢.

Forgivenp: X —» Aand ¢:Y — B, let

Cap(X,V)= |J C(X,.Y)
a€AbeEB

as a set, where C(X,,Y}) is the set of all continuous maps from X, to
Y,. Define a convergence structure on C4p(X,Y) as follows. A filter
F converges to f in C4p(X,Y), where f € C(X,,Y3) if and only if
(1) for any filter A in X which converges to r € X,, (FOHAN
converges to f(z) in Y and
(2) p-q(F) converges to p-¢(f) in AxB, where p-q : Cap(X,Y) — AxDB
is defined by p- q(g) = (a,b) if g € C(Xq,Y3).

medskip

Proposition 1.1. C4p(X,Y) equipped with this structure is a conver-
gence space over A X B with projection p-q.

Remark. If A and B are one-point spaces, then this structure 1s the
same as the continuous convergence structure on C(X,Y) [2].

For given p: X —» A and ¢ : Y — B, we can consider X x B and
A x Y as a convergence spaces over A X B with projections p x 15 and
14 x g, respectively. With this consideration, we have the following
proposition.
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Theorem 1.2. Let p : X — A and ¢ : ¥ — B be given. Then
CaB(X.Y) 1s homeomorphic to Caxp(X x B, AxY) with the fibrewise
continuous convergence structure.

Proof.  Define ¢ : Cyp(X,Y) = Caxp(X x B, AxY) as follows. For
I € C(X,.,Ys), ¢(f) is a function from X, x {b} to {a} x ¥} which
is defined by ¢(f)(z,b) = (a, f(x)). Note that this definition is well
defined and ¢ is a bijection. Suppose F — f in Cyup(X,Y). We
want to show that ¢(F) — ¢(f) in Caxp(X x B,AxY). Let 4 —
(z,b) € (X X B)ap) = Xa x {b}. Then m(A) — z in X. Hence
(FAHmANE) = f(2). | |
It is enough to show that (qﬁ(f)ﬂ:ﬁ(f))(Aﬂ(:c, b)) — ¢(f)(x,b) =
f(@)). But, pia(@(F)NHONAN(.8) = (FNHm(AN6) -
f(z) and ﬂ1(¢(f)ﬂ¢ NCAN( , b) y=m(p - qg(F) = a.

In all, (¢(.7-')ﬂ¢(f))(./4ﬂ(:r, b)) — o(f)(x,b). Moreover, let the
projection of C4x g(X x B, AxY') be denoted by r. Then it is easy to see

that (p- ¢)(f) = r(¢(f)). Hence r(¢(F)) — r(¢(f)), since (p- g)(F) —
(p- q)(f)- Therefore ¢(F) — #(f) in Caxp(X x B, A x Y). Therefore

¢ 1s continuous.

Conversely, suppose F — f in Cyxp(X x B,A x Y) where f :
(X X B)ap) = (A xY)ap), ie., f: Xs x {b} = {a} xY;. Denote
¢! = p. Note that o(f)(z) = m2 o f(x,b). We want to show that
P(F) = o(f) in Cap(X,Y). Let A — z € X,. Then A x b —

(z,b) in X x B. Thus (FNF)(A x 5)(2,8)) = f(z,b). Hence

f)ﬂw(Af))(Aﬂ ) = m(FNHAAxD) N (2, b)) — o(f)(z). Note
that r(f) = (p- ¢)(¢(f)). Therefore cp(}" — ¢(f) in Cyp(X,Y), ie.,

@ 1s continuous.

Proposition 1.3. Letp: X — A,q:Y — B and r: Z — B be given.
If f : Y — Z is a morphism over B then fy: Cap(X,Y) — Cap(X, 2Z),
defined by fy(g) = (fo)g : Xa — Zs, i3 a morphism over A x B where
g:Xg—Y, witha€ A and b € B.

- 20 -
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Proof. Let F — g in Cap(X.Y), where g : Xo — Yj. Let 4 — r

and x € X,. We need to show that ( fy(F)N fi(g))(ANz) converges to
fi(g)(x) in Z. But, since F converges to g in C4g(X,Y), (FNg)AN&)
converges to g(z) in Y, and hence fy((F N ¢)(A N &)) converges to

—_

fol(g)(2)) = fy(g)(z) in Z. Therefore ( fy(F) N fy(g))(ANT) converges
to fi(g)(x). Moreover, since p - ¢(F) converges to p- q(g), p- r( fy(F))
converges to p-r(fy(g)). In all, fy(F) converges to fi(g).

Now, we obtain some important exponential laws.

Theorem 1.4. Letp: X - A,q:Y - Bandr : Z — D be given.
Then
¢:CaBp(Y x X,Z) - Capp(X.Cpp(Y,Z))

which is defined by ¢(f)(z)(v) = f(y,x) is an 1somrphism.

Let ¢ : Y - Aandr : Z — B be given. Let Map(Y,Z2) =
{(f1, fo)l(f1, fo) : ¢ — r}. We consider Msp(Y,Z) as a subspace of
C(Y,Z) x C(A, B). For given convergence spaces Y and Z over B with
improjections ¢ and r, respectively, let Mp(Y,Z2) = {f : ¥ — Z|f
is continuous and r o f = ¢}. Note that Mp(Y,Z) € C(Y,Z). Let
Mp(Y, Z) have the subspace structure with respect to C(Y,Z). Aud.
consider Mx (Y x4 X, Z) and Ma(X,Cap(Y,Z)). In this case, ¥ x , X
is considered as a space over X with natural projection and Cap(}’. Z)
as a space over A with projection ¢-;r. Under these considerations, we
have another type of exponential law.

Theorem 1.5. Letp: X — A,q: Y - Aandr : Z — B be given.
Then
¢ . MXB(Y XA X,Z) — MA(_Y,CAB(Y,Z))

which 1s defined by ¢(f1, fo)(z)(y) = f1(y,x) 1s an isomorphism.

Remark. If A and B are one-point spaces, then we have the well-known
exponential law C(Y x X,Z) ~ C(X,C(Y, Z)), where the morphisms
f:YxX — Zand f°: X — C(Y, Z) are related by f(y,z) = f*(x)(y)
where y € Y and z € X. Moreover, by the direc calculation, we have

C(X x Y,C(I,2)) ~ C(Y x I,C(X,2)).
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Corollary 1.6. Let q:Y — B aendr : Z — B be given. Then there is
an 1somorphism between the space of homotopies H : Y x I — Z such
that r o H = 71 0 (¢ X 1) and the space of homotopies H° : B x I —
Cgp(Y,Z) over B x B, that lift (my,m): BxI — B x B over ¢ -,
defined by H(y,t) = H°(b,t)(y) where q(y) = b and t € I.

Corollary 1.7. There i3 an tsomorphism
Map(Y,Z) = M4(A,Cap(Y, 2))

i.e., there 13 an isomorphism between the space of fibre preserving maps
(fi, fo) : ¢ = r and the space of cross-sections to q -1 r.

2. Fibrations

In this section, we study the covering homotopy property.

Definition 2.1. (1) A morphism p: X — B is said to have covering
homotopy property (CHP) with respect to a homotopy H: Ax I — B
if for every morphism h : A — X such that p o h(a) = H(a,0) for all
a € A, there is a homotopy G : A x I — X such that po G = H and
G(a,0) = h(a) for all a € A, i.e.,

h
A —

L 27
(] / P
s
AxI —— B
H

(2) pis called a Hurewicz fibration if it has CHP with respect to all
homotopies H : A x I — B.

(3) p is called a Dold fibration if it has CHP with respect to all
homotopies H : A x I — B such that H(a,t) = H(a,0) for all t €
[0,1/2].

Remark. [19] The condition in (3) is equivalent to the following state-
ment : for any morphism A : A — X and homotopy H : A x [ — B

_22_
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such that po h(.) = H(.,0), there is a homotopy G : A x I — X such
that po G = H and G(_,0) ~ h.

Examples (1) Let p : X — B be a fibration and ¢ : Y — B be any
morphism. Then 7 : X xpY — X is a fibration.

(2) Let p: X — B be a Hurewicz fibration. Then, for any morphism
€ : B' — B, the pull-back p' : £*X — B’ is a Hurewicz fibration. In
fact, consider the following commutative diagram

A —Lex T x

A

AxI — B —— B
H £

By the definition of the pull-back and the fact that p is a Hurewicz
fibration, the result follows.

Proposition 2.2. Letq:Y — B and r : Z — B be given and suppose
f:Y — Z is a Hurewicz fibration. Then, for any p: X — B, fy :
Cp(X,Y) - Cp(X,2), defined by fy(g) = fyog where g : Xy — Y}, 1is
a Hurewicz fibration.

Proof.  For any convergence space A over B, consider the following
commutative diagram

h
A —— CB(X)Y)

aoJ' lf-

AxIT T CB(X y Z )
By the exponential law, we have another commutative diagram

h°
AxpX ——Y

UoXIXl lf

(AXI)XBX —T Z

- 723 -
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Since there is a homeomorphism £ : (A x I[) xg X - (Axg X)x I.in
this case A x I has the projection p, defined by p(a,t) = p(«). consider
the following diagram

°

AxpX — Y

ko(aoxl,\-)J' lf

(AxgX)x [ —— Z
koHv°

Since f is a Hurewicz fibration, there is a homotopy G' : (AxgX)xI —
Y such that G'oko(og x 1x) = h® and f o G' = ko H°. Define
G°:(AxI)xpX — Y by G° = G' ok and let G be the adjiont of G°.
Then Gooy = h and fy o G = H. Hence fy is a Hurewicz fibration.

Corollary 2.3. Let p: X — B be a Hurewicz fibration. Then, for any
space Y, p* : C(Y,X) — C(Y,B), where p*(f) = po f, is a Hurewicz
fibration.

For any convergence space B, let C'(I, B) have the continuous con-
vergence structure and ef as a projection, where eZ()) = A(0). For
given p: X — B, consider the following pullback diagram

C(I,B)xpX — X

| J»

C(I,B) —— B

Then for given eff : C(I,X) — X and C(I,p) : C(I,X) — C(I,B)
where C(I,p)(A) = po A, there exists a unique map = : C(I,X) —
C(I,B) xp X such that m o7 = ¢ and 7 o7 = C(I,p). In fact,
7 is defined by m(A) = (C(I,p)(A), e (X)). If there exists a map I :

C(I,B)xp X — C(I,X) such that 7o' = 1¢(; Byxpx, Wwe call T a
lifting function for p: X — B.

_24_
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Proposition 2.4. Let p: X — B be given. Then the following state-
ments are equivalent.

(1) p is a Hurewicz fibration.

(2) For given ¢ : D — A and (¢9.h) : ¢ — p and any homotopy
H : AxI— B of h, there ezists a homotopy G : D x I — X of g such
that poG = Ho (g x 1j).

(3) there exists a lifting function T for p: X — B.

Proof.  (1)=(2) Given a fibre preserving map (g,h) : ¢ — p and a
homotopy H : A x I — B of h, consider the following commutative
diagram

D —_— X

N !
Dx] —— AxI —— B
gxly H

Since p is a Hurewicz fibration, there exists a homotopy G : D xI — X
such that Goog =g and poG = Ho(g x 11).

(2)=>(3)Let g : C(I,B)xpX — X bemyand h: C(I,B)xpX — B
be p o m,. Then we have the following commutative diagram

C(I,B)xg X —— X

10(1,B)x5xi J'P

C(I,B) XBJY ——— B
h

Let H : (C(I,B) xp X) x I — B be a homotopy of h defined by
H(() z),t) = A(t). By (2), there exists a homotopy G : (C(I,B) xp
X) x I — X of g such that po G = H o (lg(1,Byxpx X l1). By the
exponential law C((C(I,B)xpX)xI,X)= C(C(I,B)xpX,C(I.X)),
there exists a map I' : C(I,B) xp X — C(I,X) which is defined by
(A, z)(t) = G((A, z),t). This I is a lifting function for p: X — B.

-25_
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(3)=(1) Consider the following commutative diagram

h
A — X

.l J»

AxI —— B
H

Let H' : A — C(I,B) be defined by H'(a)(t) = H(a,t). Note that
(H'(a),h(a)) € C(I,B) xp X. Define G' : A — C(I,X) by G'(a) =
['(H'(a), h(a)). By the exponential law C(A4,C(I,X)) = C(A x I, X),
there exists amap G : AxI — X which is defined by G(a,t) = G'(a)(t).
Then po G = H and G ooy = h. Hence p is a Hurewicz fibration.

Proposition 2.5. For any morphismp: X — B, p' : C(I,B)xgX —
B, where p'(A,z) = A(1), 13 a Hurewicz fibration.

Proof.  Consider the morphism = : C(I,C(I,B)xpX) — C(I,B)xp
(C(I,B) xp X), where n(A) = (p' o A\, \(0)). Define I' : C(I,B) xp
(C(I,B) xp X) — C(I,C(I,B) xp X) as follows: for (w,7,z) €
C(I,B) xp (C(I,B) xp X), Iw, ,z)(t) = (¢q,z), where ¢ is the path
from p(z) to w(t) along 7 and w. If (w,7,2) € C(I,B) xp (C(I,B) xp
X), then 7(0) = p(z) and w(0) = p'(7.x) = 7(1). Hence this definition
is well defined. Moreover, I'(w, 7,2)(0) = (¢,z), where ¢ is the path
from p(z) to w(0) = 7(1) along 7, i.e., I'(w, 7,2)(0) = (7, ). Therefore,
m(Nw,7,2)) = (p' o Nw,7,2),I(w,7,2)(0)) = (p' o Nw,7,z),(7,2)).
And p' o IN(w, 1, 2)(t) = p'(g,2) = ¢(1) = w(?), 1.e,, p o T(w,7,2) = w.
So, o (w,7,2) = (w, 7,z). This means that I is a lifting function for
p'. By Proposition 2.4, p' is a Hurewicz fibration.

Remark. The fibration in the above proposition is called the mapping
track fibration.

Proposition 2.6. p: X — B i3 a Hurewicz fibration if and only if the
statement (2) in proposition 3.3 holds for the induced space, i.e., for

_26_
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given diagrams

m2

AxgX — (AxpX)xIT X
L b el I
A — B AxT — B

h H

there erists a homotopy G : (A xp X)xI — X such that po G =
Ho(m x1p).

Proof.  The only if part is trivial. Let ¢ : D—- Aandg:D — X be
given and pog = fogq. Then there exists a uniquemap k: D — AxpX
such that o0k = g and 7y 0k = ¢. Define the homotopy K : D xI — X
by ¥ = G o (k x 1;). Then this homotopy satisfies the conditions in

(2).

Proposition 2.7. Letq:Y - Aandr:Z — B be given.

(1) If ¢ and v are Hurewicz fibrations, then so s q-7:CxB(Y,Z2) —
A x B.

(2) If ¢ and r are Dold fibrations, then so 13 ¢-1 : Cap(Y,Z) —» AxB.

Proof.  Consider the following commutative diagram

X — CanlY,2)

.,.,l lq.r

XxI —— AxB
H

We consider X as a space over A with projection p: X 29, x x T -2
A x B = A. By the exponential law, there is a continuous map

R :Y x4 X — Z defined by h°(y,z) = h(z)(y)-

- 27 -
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Define G: (Y x4 X) x iU 'V LI A x B 2% B and consider
the following diagram

he
Y x4 X — Z

aol l

(Y xaX)xI —— B
G

Then r o h°(y,z) = r(h(z)(y)) and Goagy(y,z) = G(y,z,0) =m0 H o
(72 x 11)(y,2,0) = my(H(z,0)) = ma(q - r(h(z))). But, r(k(z)(y)) =
m2(q-r(h(z))), and hence the diagram commutes. Since r is a Hurewicz
fibration, there exists a homotopy K : (Y x4 X) x I — Z such that
Kooy=h°andro K =G.

Consider the pull-back diagram

YXA(XXI) —_— Y
| s
X xI —H—> AxB — A

Define H* : (X xI)xI —- A x B by

H(z,t—3s) if t—s5>0

H*(z,s,t) =
(2,5,%) {H(m,O) if t—s<0

For these H and H*, consider

Y x4 (X x I) LI Y

ol |

(Y x4 (X xI))xI —— (X xI)xI A

X1y moH*

Then, forz € X, and y € Y,, go H(y, z,t) = gy) =a. And myoH*o
(m x17)oop(y.z,t) =m0 H*o(w x 11)(y,2.t,0) = 7y 0o H*(z,t,0) =

_28_
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71(H(x,0)) = m(g-r(h(z))) = a. Hence the diagram commutes. Since
¢ is a Hurewicz fibration, there is a homotopy L : (Y x 4(X xI))xI — Y
such that Logg = H and go L = m 0o H* o (w x 1j). Define M :
Y x4 (X xI)—>Y by M(y,z,t) = L(y,x,t,t). Then M is continuous.
Define a : Y x4 (X xI) = (Y x 4 X ) x I by a(y, z,t) = (M(y,x,t), ,1).
Then « is also continuous. For Koa : ¥ x 4 (X xI) = (Y x4 X)xI —
Z, by the exponential law, there is a continuous map N : X x I —
Cap(Y,Z) defined by N(z,t)(y) = K o a(y,x,t). Then this N is a lift
of the given H. Indeed, N oog(z)(y) = N(z,0)(y) = (K oa)(y,x.0) =
K(M(z,0,y),z,0) = K(L(y,,0,0),z,0) = A'(L(y,,0,0),2) = h(x)
(L(y,z,0,0)) = h(z)(H(y,z,0)) = h(x)(y). Hence N o ao(z) = h(x).
And, for z € X,, let N(z,t): Y, — Z;. Then q-r(N(z,t)) = (a,b). By
the above pullback diagram, 7y 0 H(z,t) = a. And, b =roN(z,t){(y) =
roKoa(y,z,t) =roK(M(y,z,t),z,t) = G(M(y,z,t),x,t) =m0 Ho
(g x 17)}(M(y,z,t),z,t) = m 0o H(z,t). Hence H(z,t) = (a,b). In all,
(¢-7)o N = H. This completes the proof. '

(2) Note that if H has the property concerning {0,1/2] that occurs
in the Dold fibration, then so do the other homotopies involved.

We have the following results as corollaries of Proposition 2.7.

Corollary 2.8. Letq:Y — B and r : Z — B be given.
(1) If q and r are Hurewicz fibrations, then so is Cp(Y,2) — B.
(2) If ¢ and r are Dold fibrations, then so 1s Cp(Y,Z) — B.

Proof.  Suppose A = B in Proposition 2.7 and consider the following
commutative diagram

h inc
X —— Cp(Y,Z) —— Cga(Y,2)

aoJ' q.rl 1.,1

Xx]I —— B —— BxB
H A

Since -7 : Cpp(Y,Z) — B x B is a fibration, there exists a homotopy
K : XxI — Cpp(Y, Z) such that Kooy = incoh and (¢-r)oK = AoH.
Let G be the coresriction of K. Then Goog =h and (¢-r)o G = H.

- 720 -
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Corollary 2.9. p : X — B is a Hurewicz fibration if and only if
p-p:CpB(X,X)— B x B is a Hurewicz fibration.

Proof. By Proposition 2.6, given a space A and map f: A — B, it
is enough to show that for given diagrams

AxpX — X (AxgX)x1 X
7"11 ll’ 1|’1><11Jv l?
A —— B AxI — B

f F

where F is a Homotopy of f, there exists a homotopy G : (AxgX)xI —
X of m; such that poG = Fo(m x17). Consider the following diagram

A — Cpa(X.X)

.| |

AX] ——— B xB
(f°7|'1,F)

where g(a) : Xy — Xk(a,0) is defined by g(a)(z) = m3(a,z) = z.
Since p-p is a Hurewicz fibration, there exists a homotopy G' : Ax I —
Cpa(X,X) such that (p-p)oG' = (fom,F)and G' ooy = ¢g. By
the exponential law, there exists G: (Ax I) xp X = (A xg X)x I —
X which is defined by G(a,z,t) = G'(a,t)(z). Then p(G(a,z,t)) =
p(G'(a,t)(z)) = F(a,t) = F(m x 11((a, z),t)).

Examples (1) Let ¢ : Y — B be any map. Then, for any 1p: D — D,
¢g-1p : Cpp(Y,D) - B x D is a fibration. In fact, Cgp(Y,D) =

U CYs,Dy)= U C(Ys,{d}),ie., Cpp(Y,D)is the union of
beB.deD b€B,dED
constant maps from each fibres on Y. Hence, for a given diagram

h
A —— Cpp(Y,D)

o] L

AXIT .BXD
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the lift of H is defined by G : A x I — Cpp(Y,D),G(a,t) : Y3 — {d}
if H(a,t) = (b,d).

(2) Let r : Z — D be any map. Then, for any 15: B — B, 1p -r:
Csp(B,Z) = B x D need not be a fibration. In fact, Cpp(B,Z) =

U C(Bw24) = U C({b},2a), ie,, Cpp(B,Z) is the union
beB.deD beB,deD
of maps with singleton domain. If Z; = @ for some d € D, then

1p-r:Cpp(B,Z) — B x D has not the covering homotopy property.
Now, we define the dual notion of the fibrations.

Definition 2.10. The morphism u : B — X is called a cofibration if
for any space Y and for any morphism f : X - Y and G: B — C([,Y)
such that pgog = f ou, there exists a morphism H : X — C(I,Y) such
that poo H = f and Hou =G, i.e.

G
B —— C(1)Y)

JOET e
X%—f—v Y

Example Let u : B — X be a cofibration. Then, for any morphismn
¢ : B — B', the push-out v’ : B' — £,X is a cofibration. In fact,
consider the following commutative diagram

3 G
B —— B'xpX —— C(I,Y)

“l u'l 100
XxI — &LX —— Y
H f

By the definition of the push-out and the fact that u is a cofibration,
the result follows.

Proposition 2.11. Let u : B — X be a cofibration. Then for any
space Y, u x ly : BxY — X xY 135 also a cofibration.
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Proof.  Consider thr following commutative diagram

G
BxY —— C(I,2)

quyl lpo

XxY —— Z
f

Then by the exponential law, we have the commutative diagram

o
B —— C(I,C(Y, Z))

i b
X —f°—> C(Y,2)

Since u is a cofibration, there exists H° : X — C(I,C(Y, Z)) such that
h°ou =G° and pgoG°® = f°. Let H : X xY — C(I, Z) be the adjoint
of H®. This completes the proof.

Using above result and an exponential law, we have the followin
result.

Proposition 2.12. Let v : B — X be a cofibration. Then for any
space Y, u* : C(X,Y) — C(B,Y), which is defined by u*(f) = fou is
a Hurewicz fibration.

Proof. Let u: A — X be a cofibration and Y be a space. Consider
the following commutative diagram

4 L eoxy

o

AxI — C(B,Y)
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By the exponential law, we have the following commutative diagram

o

H
Bx A —— C(IY)

quAl lﬂo

Xx4—— ¥

Since u X 14 is a cofibration, there exists a morphism G° : X x 4 —
C(I,Y) such that pg o G° = f° and G° o (u x 14) = H°. By the
exponential law, we have G : A x I — C(X,Y) which is defined by
G(a,t)(z) = G°(z,a)(t). Note that Gooy = f and u* o G = H.
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