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Characterization of the foliation by the first eigenvalues of
the basic Dirac operator

Seoung Dal Jung and Yong Sik Yun

Abstract. On a foliated Riemannian manifold with a transverse spin struc-
ture, any eigenvalue X of the basic Dirac operator satisfies A2 > Z(EQ_T)(HI +

inf |x|2), where y, is the first eigenvalue of the basic Yamabe operator and « is
a mean curvature form. Using the real spinor representation of spin and the
generalized Lichnerowicz-Obata theorem, we prove that for the codimension of F
is ¢ = 3,4,7 and 8, the foliation F with the eigenvalue A= 3(—qq_T)(l11 + inf |k|?)
is transversally isometric to the action of discrete subgroup of O(q) acting on the
g-sphere.

1 Introduction

The first estimate for the eigenvalues X of the basic Dirac operator Dj restricted to
the space of basic sections of a foliated spinor bundle on the foliated Riemannian
manifold (M, gar, F) with a transverse spin structure was obtained by Jung(8].

f
Namely, by using a modified connection V defined by

f
Vx ¥ =Vx¥+ fr(X)-¥, (1.1)
one proved that the following inequality

q

2> 1
~4(g-1)

inf(o¥ + |&|?) (1.2)

holds, where ¢ = codimF, oV is the transversal scalar curvature and x is the
mean curvature form of F. Recently, Jung.et al.[9] proved that on the transverse
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spin foliation F of codimension ¢ > 3 and bundle-like metric gps, any eigenvalue
A of the basic Dirac operator Dy satisfies

. inf |2 1.
2 s+ inf o), (13

where p; is the smallest eigenvalue of the basic Yamabe operator Y}, which is
defined by

This paper is organized as follows. In section 2, we review the known facts on the
foliated Riemannian manifold. In section 3, we recall the generalized Lichnerowicz
and Obata theorem [13]. In section 4, we study the basic Yamabe operator and
eigenvalues of the basic Dirac operator. In section 5, we study the limiting case.
Moreover, by the generalized Lichnerowicz and Obata theorem for foliations, we
prove that in case of ¢ = 3,4,7 and 8, F is transversally isometric to the space
of orbits a discrete subgroup of O(g) acting on the standard g-sphere (See [7] for
ordinary manifold).

Throughout this paper, we consider the bundle-like metric gas for (M, F)
such that the mean curvature form « is basic and harmonic. The existence of the
bundle-like metric gps for (M, F) such that x is basic, i.e., k € QL(F), is proved
in [3]. In [15,16], for any bundle-like metric gps with k € QL(F), it is proved that
there exists another bundle-like metric gas for which the mean curvature form &
is basic-harmonic.

2 Preliminaries and known facts

Let (M, gum, F) be a (p+ ¢)-dimensional Riemannian manifold with a foliation F
of codimension ¢ and bundle-like metric gy with respect to F.
We recall the exact sequence

0L ->TMS5Q—-0

determined by the tangent bundle L and the normal bundle Q = TM/L of F.
The assumption of gps to be a bundle-like metric means that the induced metric
gQ on the norrna.l bundle @ = L' satisfies the holonomy invariance condition

VgQ = (, where V is the Bott connection in Q.
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For a distinguished chart & C M the leaves of F in U are given as the fibers
of a Riemannian submersion f : if — V C N onto an open subset V of a model
Riemannian manifold V.

For overlapping charts U, N Us, the corresponding local transition functions
Yo = fa © fﬁ_1 on N are isometries. Further, we denote by V the canonical
connection of the normal bundle @ of F. It is defined by

{ Vxs =n([X,Y,]) for X e TL, 1)

Vxs =n(VY¥Y,) for X € TL*,
where s € I'Q and Y, € 'L+ corresponding to s under the canonical isomorphism
Q = L+. The connection V is metric and torsion free. It corresponds to the

Riemannian connection of the model space N([10]). The curvature RV of V is
defined by

RY(X,Y)=VxVy - VyVx —Vxy for X, Y eTM.

Since i(.X)RV = 0 for any X € I'L([10]), we can define the (transversal) Ricci
curvature p¥ : TQ — I'Q and the (transversal) scalar curvature o of F by

p¥(s) =D RY(s,E)E., 0% =Y go(p"(Ed), Ea),

where {FE;}q,-1,.. 4 is an orthonormal basis of ). The foliation F is said to be
(transversally) Finsteinian if the model space NV is Einsteinian, that is,

1
pV =0V -id. (2.2)
q
Let Q(F) be the space of all basic r-forms, i.e.,

OL(F) = {p € ¥ (M)]i(X)p=0, 6(X)p =0, for X € TL}.

The foliation F is said to be isoparametric if k € QL (F). We already know that
k is closed, i.e., ds = 0 if F is isoparametric ([18]). Since the exterior derivative
preserves the basic forms (that is, §(X)d¢ = 0 and (X )d¢ = 0 for ¢ € QF(F)),
the restriction dg = d|Q‘B(}') is well defined. Let ég the adjoint operator of dp.
Then it is well-known([1,8]) that

dg =Y 0.AVg, bp=-Y i(E)Ve, +i(xp), (2.3)

a
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where kp is the basic component of , {E,} is a local orthonormal basic frame
in @ and {6,} its gg-dual 1-form.
The basic Laplacian acting on Q% (F) is defined by

Ap =dgdp + dpdp. (24)

If ¥ is the foliation by points of M, the basic Laplacian is the ordinary Lapla-
cian. In the more general case, the basic Laplacian and its spectrum provide
information about the transverse geometry of (M, F)([17]).

3 Generalized Lichnerowicz and Obata theorems

Now, we recall the generalized Lichnerowicz-Obata Theorem by J. Lee and K. Rich-
ardson for foliations([13]).

Definition 3.1 Let G be a discrete group. Then F is transversally isometric to
the isometric action of G on a Riemannian manifold N if there exitsts a smooth,
surjective map ¢ : M — N such that

1. The function ¢ induces a homeomorphism between the leaf spact M/F and
the orbit space N/G.

2. For each x € M, the push forward ¢, restricts to an isometry ¢, : Q, —
T4y N, where Q ts the normal bundle of the foliation and TN is the tangent
bundle of N.

Theorem 3.2 ([13])(Generalized Lichnerowicz Theorem) Let F be a codimen-
ston g Riemannian foliation on a closed, connected Riemannian manifold M.
Suppose that there ezists a positive constant ¢ such that the transversal Ricci cur-
vature satisfies p¥(X) > c¢(q — 1)X for every X € Q. Then the smallest nonzero
eigenvalue Ap of the basic Laplacian A satisfies

A > .

Theorem 3.3 ([13]) (Generalized Obata Theorem) The equality holds in Theo-
rem 5.6 if and only if

1. F is transversally isometric to the action of a discrete subgroup of O(q)
acting on the q sphere of constant curvature c. Thus, there are at least two closed
leaves(the poles).
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2. If we choose the metric on M so that the mean curvature form is basic,
then the mean curvature of the foliation is zero.

3. Each level set of the Ag eigenfunction is the set of leaves corresponding to
a latitude of the q sphere, and the volume V(r) of this level set is the volume of
the mazimum leaf L times the volume of the latitude.

For the classification of real Clifford algebra Cl(n) of R, we have the following
proposition.

Proposition 3.4 ([12]) For 1 < n < 8, the Clifford algebra Cl(n) and the di-
mension d, of an irreducible R-module for Cl(n) are given by the followings:

Cl()=C, Cl(2)=H, Ci3)=HeH, Cl(4)=H(?2)
Cl(5) = C(4), CI(6)=R(8), CI(7)=R(8)®R(8), CI(8)=R(16)
d1 = 2, d2 = 4, d3 = 4, d4 = 8, d5 = 8, d6 == 8, d7 = 8, dg == 16,

where K(n) denote the algebra of n x n-matries with entries in K = R, C or H.
Forn>8. ie,n=m+8k (mk>1), dnigr = 2%d,,.

4 Basic Yamabe operator

Let (M, gar, F) be a compact Riemannian manifold with a transverse spin folia-
tion F of codimension ¢ and a bundle-like metric gy, with respect to F. Then
the transversal Dirac operator D,, is locally defined ([2,5]) by

D,¥ =Y E, V5V - %n ¥ for ¥ € I'S(F), (4.1)

where {F,} is a local orthonormal basic frame of Q. We define the subspace
[ g(S(F)) of basic or holonomy invariant sections of S(F) by

Ts(S(F)) = {¥ € TS(F)|Vx¥ =0 for X € TL}.

Trivially, we see that D, leaves I'g(S(F)) invariant if and only if the foliation F is
isoparametric, i.e., K € QF(F). Let Dy = DylrysiFy : I'e(S(F)) — T(S(F)).
This operator D, is called the basic Dirac operator on (smooth) basic sections. On
an isoparametric transverse spin foliation F with dx = 0, it is well-known([2,5,8])

that .
Df,\Il =V;, V¥ + ZK:’\II, (4.2)
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where KY = ¢V + |&|? and

ViVl == Vi o ¥+ VL (4.3)

Now, we consider, for any real basic function u on M, the transversally conformal
metric go = e**gg. Let P,,(F) be the principal bundle of gg-orthogonal frames.
Locally, the section 5 of P,,(F) corresponding a section s = (Ey, -+ ,Ey) of
Po(F)is§=(E),--- ,E,), where E, = e *E, (a =1,--- ,q). This isometry will
be denoted by I,. Thanks to the isomorphism I, one can define a transverse spin
structure Py (F) on F in such a way that the diagram

Poin(F) =15 Prpin(F)

! l

Po(F) —L Py(F)

commutes. )

The transversal Ricci curvature p¥ of go = e®go and the transversal scalar
curvature ¢V of go are related to the transversal Ricci curvature p¥ of gg and
the transversal scalar curvature ¢V of gg by the following lemma.

Lemma 4.1 ([9]) On a Riemannian foliation F, we have that for any X € Q,

e p¥(X) =p¥(X) + (2 — q)Vxgrady(u) + (2 — q)|grady(u)|2X

+ (g — 2) X (u)grady(u) + {Apu — k(u)} X. (4.4)

e*oV =0V + (g - 1)(2 — g)|grady (w){* + 2(g — 1){Apu — &(u)}. (4.5)

From (4.5), we have
e KY =6V + |k|? +2(g — D)Apu + (g — 1)(2 — q)|gradv(u)|* — 2x(w). (4.6)

On the other hand, for ¢ > 3, if we choose the positive function h by u = qf—2 Inh,
then we have

2
Agu = (]—_—2{h'2|gradv(h)|2 + h~'Agh}, (4.7)

grads (W = (—)*h *lgrad (k)" (49)
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Hence we have
! . 4
€2uKav = hQ—LzK: = hﬂl}fbh + !K,|2 - quh_ll‘i(h). (49)

where !
}/b:4chT2‘AB+O'V, (—110)

which is called a basic Yamabe operator of F.
Now we put K, = {u € Q%(F)|x(u) = 0}. If we choose u € K,, then
x(h) =0 = k(u). From (4.6) and (4.9), we have

eQ“Kf = KY¥ +2(g-1)Apu—(¢—1)(g—2)|gradv(v)|* = k™' Yoh + |&|*, (4.11)

where KY = oV + |k|%. Assume that the transversal scalar curvature oV is non-
negative. Then the eigenvalue h; associated to the first eigenvalue p, of ¥} can
be chosen to be positive and then y; is non-negative. Thus

hl_lybhl = - (4.12)
Since sup inf{h~'Y,h} > u,, we have the following corollary.

Corollary 4.2 Let (M, grr, F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension ¢ > 3 and bundle-like metric gn with
k € QL(F) and dk = 0. If the transversal scalar curvature satisfies o¥ >0, then
we have

A2 >

q . 2
i(q - 1)(#1 + 111\14f|n| ). (4.13)

5 Characterization of the foliation

In this section, we study the foliated Riemannian manifold M which admits a
non-zero foliated spinor ¥, such that Dy¥; = A ¥, with A2 = 3(g/(g — 1)) (1 +
inf |x|2). We define Ricl, : TQ ® S(F) — S(¥) by

Ricl(X® W)=Y E.-R/(X,E,)Y¥, (5.1)
f f
where R/ is the curvature tensor with respect to V defined by Vx ¥ = VxV¥ +
fr(X)-¥. By long calculation, for X € TQ and ¥ € I'S(F) we have ([8])

Ricl (X @¥) = —%pV(X)-‘II+2(q— 1) f2X -0 — gX (f)¥ —grade(f)-X ¥ (5.2)
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for X € TQ. Similarly, we obtain the formula for Ricl (X ® ¥) associated to
S(F). Namely,

Rict (X®\I/) = —%pv(X)T\I!-I—Q(q— 1) fPXV ~ g X (f)¥ - grade(f)° X0, (5.3)

where p¥(X) is the transversal Ricci curvature with respect to V. From (5.2)
and (5.3), we have the following facts.

.
Proposition 5.1 ([9]) If M admits a non-zero foliated spinor U with V ¥ =
then f is constant and for any X € TM

Vx¥ = —fe*m(X) ¥ + %K(X) -grady(u) - ¥ + ;gQ(gmdv ), m(X)¥. (5.4)

And also we have the following theorem.

Theorem 5.2 Let (M, gpr, F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension q > 3 and bundle-like metric gp; such that
k € QL(F) and 5k = 0. Assume that 0¥ > 0. If there exists an eigenspinor field
U, of the basic Dirac operator Dy for the eigenvalue \? = = D —L—(u, +inf |k|2), then
¥, is a transversal Killing spinor and F is mmzmal transversally Finsteinian
with positive constant transversal scalar curvature oV .

From the generalized Lichnerowicz and Obata theorem in section 3, we have the
following theorem (cf. [7]).

Theorem 5.3 Let (M, gur, F) be a Riemannian manifold with a transverse spin
foliation F of codimension q¢ = 3,4,7,8 and a bundle-like metric gy with k €
QL(F). Assume that the mean curvature k of F satisfies 6k = 0 and ¢¥ > 0. If
there exists an eigenspinor field U, for A\; with A\? = WQ—T)(“I + inf |&|?), then
(1) F is minimal, transversally Finsteinian.
(2) F is transversally isometric to the action of discrete subgroup of O(q)
acting on the q—sphere, where q = 3,4, 7, 8.

Proof. (1) is trivial from Theorem 5.2. Next, we prove (2). Since F is minimal,
eV (X) = éulX. Let ¥ and ® be the foliated spinors with D,¥ = A\ ¥ and
Dy® = —X;®. Then we have the following equations. For any X € I'Q

M M

Vil =-TX ¥, Vxd= X0 (5.5)
q
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If we put f = (¥, ®), then by direct calculation, we have

; M -
ABf——q—lf. (06)

It is sufficient to prove that f does not vanish identically.

(1) In case g = 4,8, it is well known [12] that the real spinor bundle S(F) spilts
as the two irreducible real representations:

S(F)=SYHF)® S (F). (5.7)

Then ¥ = U+t + ¥~ and ® = ¥+ — ¥~ where ¥* € S*(F). Hence we have that

for any X € I'Q,
4
X(f) ==

where (-,-) = Re < -,- >. Let us definethe map F : Q@ - S~ (F) by X —» X -¥™.
Then F is the R-linear and injective. Since dy = 8 and dg = 16 from Proposition

3.4, dimg @ = dimg S™(F). Hence F is isomorphism and there exists X # 0 such
that

(X : \I’+,\I/_), (58)

(X -¥7,97) #0, (5.9)
which implies that f #Z 0.

(2) In case ¢ = 3,7, if we define F : Q — S(F) by X — X - ¥, then F is R-linear
and injective. Since d3 = 4 and d; = 8 in Proposition 3.4, dimg @ = dimg F(Q) =
dimg S(F) — 1. Since (¥, X - ¥) = 0, F(X) ¢ E\ (D), where Ey (D,) is the
eigenspace corresponding to the eigenvalue A\;. Hence dim E),(Dy) = 1 and
F(Q) = Ex, (Dy)t. So F: Q — E\,(Dy)* is an isomorphism. Since & € F(Q),
there exists X # 0 such that

X(f) = _?l(x U, B) £ 0, (5.10)

which implies that f £0. O

Theorem 5.4 Let (M, gy, F) be a Riemannian manifold with a transverse spin
foliation F of codimension q = 5(resp. ¢ = 6) and a bundle-like metric gp.
Assume that the mean curvature k of F satisfies 6k = 0 and oV > 0. If the
dimension of the eigenspinor space of A\; with A\? = i (4 +inf |k|2) 1s 3 (resp.
2), then

(1) F is minimal, transversally Finsteinian.

(2) F is transversally isometric to the action of discrete subgroup of O(5) (resp.
O(6)) acting on the 5— (resp. 6—) sphere.
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Proof. The proof is similar to the one of (2) in Theorem 5.3. O
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