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Sonar Grid Map Based Localization

for Autonomous Mobile Robots

Yu—Cheol Lee* - Jong—Hwan Lim#*

ABSTRACT

A mobile robot must be able to build a reliable map of surroundings and estimate its position. We

have developed a technique for a grid—based localization of a mobile robot with ultrasonic sensors
using EKF (Extended Kalman Filter). For this, we used grids themselves as landmarks of the
environment. The grid—based localization can minimize the use of computer resources for localization

because this approach does not rely on exact geometric representation of a landmark. Experiments

were performed in a real environment to verify the methodology developed in this study, and the re—

sults indicate that the grid—based localization can be useful for a practical application.

Key Words : Localization, Grid Map, EKF, Sonar, Mobile Robot

I . Introduction

An autonomous mobile robot requires a lo—
calization technique to move and adapt at an
unknown environment [1—3]. The meaning of
localization for a mobile robot can be explained
as estimating its position to answer the ques—
tion "Where am I?". To estimate its location,
the mobile robot needs a sensor to recognize
the surroundings. Many researchers have de—
veloped various methods of position estimation
by utilizing many kinds of sensors.

Cox originally addressed the localization
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problem, which is computing an estimation of
the mobile robot position when there is a lack
of knowledge about the current position of ve—
hicle in the navigation area [4][5]. Cox sug-
gests a localization method using infrared range
scanner and an odometer with the mobile robot
named Blanche. The positions of the mobile
robot were obtained by matching the sensor
observation using an initial estimate of vehicle
position from odometer according to iterative
process.

Hinkel et al., Hoppen et al. and Gonzalez et
al. have developed a localization technique us—
ing high speed laser rangefinder [6—8]. Hinkel
et al. and Hoppen et al. presented a histogram
based algorithm that was successfully worked
in simple geometry environment such as
corridors. Gonzalez et al. proposed an iconic

algorithm, where laser ranges were paired with
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a segment based representation of environment.
They obtained the mobile robot position from
the set of pairings between observations and
model features by an error minimization algo—
rithm where a set—based representation of
sensor error was considered. However, their
algorithms seem to have limitation for the ap-—
plication of sonar sensor because sonar sensor
can not acquire the range data as speedy as a
laser scanner and the directivity of sonar range
data is dissimilar from optical range data such
as laser beam information.

Leonard et al. have first developed the mod—
el—based localization technique using sonar
sensors [9—11]. They suggested the concept
of "Regions of constant depth (RCDs)," which
was drawn from raw sonar range data. The
geometric model is composed of the corner,
edge, cylinder and wall and it is constructed by
matching between RCDs. The constructed
model features are used for robot localization
by extended Kalman filter. The results of this
method are considered a success when it is
applied to the simple environments. However, it
can be hardly applied to a dynamic and un—
known environment because the feature—based
map building method has some limitations.

A problem of feature map is a limitation of
geometric representation in the complex
environments. For example, the curved shapes
of object cannot exactly be represented in the
feature map because it is not registered in the
feature models. The other limitation is that the
feature based—map building method can hardly
manage the existing features generated in the
past, so that it is difficult to cope with the dy—
namic environment.

The grid map building method can cover the
weak points of the feature map mentioned

above. The technique of position estimation
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based on grid map has been first introduced by
Elfes [12](13]). To estimate the robot position,
local grid maps were constructed using sonar
range data. The robot positions were estimated
by finding the best matched positions between
local and global maps. However, this approach
has a limitation that the robot cannot con—
tinuously estimate its position because it is in—
dependent of previous movements.

In this study, grid map based localization is
presented that is able to continuously estimate
the robot's position using sonar data. The grid
map based localization algorithm is similar to
the feature based localization in a way that it
also uses the extended Kalman filter. However,
the process of this technique is much simpler
than the feature based localization method be-
cause the grid map does not require a specific
geometric landmark.

The paper also presents the extraction
method of robust landmarks from grid map,
which should rigidly represent the robot
surroundings. The plant model has been devel—
oped to predict the robot position using geo—
metric relation of control input. The measure—
ment model has also been developed to match
between grid—based landmark and sonar range.
The techniques of landmark extraction and
mathematical models have been implemented to
estimate the robot's position using EKF.

II. Certainty Grid—Based Mapping

A Bayesian probability map is composed of
many grids that represent the workspace of the
robot. Each grid has an occupancy probability
of an object. Fig. 1 shows a sonar footprint,
which is assumed to be a fan shape. The grids
within the sonar footprint that are to be up-—
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dated are rearranged according to the distance
from the transducer location. These grids are
divided into empty regions, e.g., grids 1
through j—I, because the sonar beam must
pass through them, and into occupied regions,
e.g., grids /j through j+m, where the beam
stops. The measured range can extend to any
cell in the occupied region. The occupancy
probability for a grid in the empty region
should decrease, while that for a grid in the
occupied region should increase. The updated
occupancy probability is determined using the
Bayes conditional probability theory according
to the distance and angle of the grid from the
sensor [14].

, .
i >
/5 - | 1
3 /, 4/ 6éymeasured range value
=

Fig. 1. Footprint of a sonar beam.

The Bayesian model supports a sound theo—
retical basis for the probability map. In real
applications, however, it does not consider
specular reflection that frequently returns in-—
correct range data[15]. In Fig. 1, for example,
if specular reflection occurs at the /n grid, the
probabilities of the grids behind it (from /+1 to
Jj*m) should not be updated. The Bayesian

model, however, still updates those probabilities
regardless of the specular reflection. As a re—
sult, the occupancy probabilities of the grids
corresponding to real objects can become ex—
ceedingly small.

To solve this problem, Lim and Cho [15][16]
developed a mapping model with the ability to
detect specular reflection by evaluating the
orientation probability of each grid. In this
model, the orientation probability was updated
using the specular reflection effect conversely.
As shown in Fig. 2, the grid was divided into n
orientations. The orientation was determined by
the relative angle from the sensor bearings,
and its probability was updated using the Bayes
formula. For example, Fig. 2 shows that only
the ku, orientation probability increases because
the sonar beam must be reflected vertically
from the object surface. As the information is
accumulated, the probability of the orientation
corresponding to a real object surface con-—
tinuously increases, while those of the rest of
the orientations decrease. The possibility that
the specular reflection effect or multipath phe—
nomena occurred for each set of sonar range
data can be probabilistically considered using
the orientation probabilities. Data with a high
possibility of the specular reflection have little
influence on the occupancy probability updates
while data with a low possibility of specular
reflection effect have much influence on the
occupancy probability updates. Thus, the ori—
entation model can construct a good quality
map despite the presence of specular reflec—

tion.
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"2 Sensor

«

Fig. 2. Virtual orientations in a grid.

l. Certainty Grid—Based Localization

The grid map based localization with occu—
pancy probabilities has been developed to esti—
mate the robot position in this paper. The tool
for localization is the EKF (Extended Kalman
Filter) that has been extensively used to esti—
mate position such as missile tracking and GPS
route navigation of ship. For the application of
EKF to a mobile robot, strong landmark should
be extracted from robot's surrounding from
grid map. This chapter presents the extracting
technique of a strong landmark as well as the
plant and the measurement models to predict
and estimate the robot position with the ex-—

tracted landmarks.
3.1 Landmark
The selection of a specific landmark is a

significant factor that decides the success of
the robot localization[17-20]. The landmark
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plays an important role in the robot localization.
As shown in Fig. 3, a sonar beam is expressed
as the fan shape because of the angular un—
certainty of the sonar sensor, and the point
feature are generated where the two sonar
footprints from different positions are crossed
each other. This point feature can easily de-—
tected by a sonar sensor, and the visibility an—
gle, defined as the range of angles from which
the feature is detected by the sensor, is larger
than that of the a line feature. Therefore, we
defined the strong landmark as the point
feature. If the occupancy probability of a new
point feature is high, then it is selected as a

new landmark for localization.

6ata( 1)

Data(2)
Fig. 3. Representation of a Jandmark.

3.2 Position Prediction Model

The first step for the estimation of the robot
location is to predict the next step of the robot
position from the known information of the
previous robot position. The 4y position of the
robot in the two dimensions is defined as X(k)
in the Eq. (1). X(k) consists of x(k), y(k) and
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orientation # (k) on the Cartesian coordinate.

X(B)y=[x(k), X&), D] 7 1

Therefore, the robot position at &+, is de—
fined as X(k+1). U(k), the robot's control in—
put, is required to estimate X(k+1). As shown
in the Eq. (2), Utk) depends on two factors,
translation distance d(k) and rotation angle A4
k).

Uk)=[d(k),a6(0)] 2

As shown in Fig. 4, the robot location
X(+1) can be predicted from the geometric
analysis of the robot movement using X(k) and
Ulk). When a robot rotates with an angle of A
# (k) and then moves with a distance of d(k),
the k+1,4 robot location can be defined as the
following.

\ Gk +1)

- 00)

/

robot

(xtk+1), Mk +1)

X (xtk), y(K))

Fig. 4. Position and orientation of a robot at
time step & and k+1.

X(e+)=A(XRUK) A , ()~Madk) (3)

In Eq. (3), f(X(k),U(k)) is the plant model of
a robot and it can be expressed by the non—
linear state transition function as the Eq. (4).
Also, v(k) represents the noise source of dead
reckoning and it can be expressed by the zero
mean Gaussian noise whose mean is O and co—
variance is Q(k) [21].

x(k)+d(k)cosB(k)
F(X(0)UK))={ y(k)+d(k)sin (k)
(k) +Ab(k) 4)

The robot position, X(k+1), is unknown due
to odometer errors. For this reason, X(k+1)
can only be predicted using the estimated kth
position, £(k/k), and control input, Utk), as
shown in Eq. (5).

#(k) + d(k)cosd(k)
X(k+1]k)= £ (X (k) UK)) =| 5k)+d(k)sind(k)
G(k)+ AB(K)

(5)

The error between the estimated value, £
(k+1/k), from the Eq. (5) and the defined
value, X(k+1), from the Eq. (3) is expressed
as a covariance. At this time, £(k/k) is the
estimated value while the control input, Utk),
is the defined value. Therefore, the error of X
(k+1/k) can be expressed by the covariance,
Clk+1/k), as shown in the Eq. (6) when the
robot position X(k+1) from the Eq. (3) is ex—
pressed under Taylor Series of the estimated
position, £k/k) [22].

Clk +1|k)y=Vf -C(k|k)- VST + Q(k) 6)
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In the Eq. (6), C(k/k) is the covariance of
the A robot position error. Vf is Jacobian of
the state transition function, f(X&k/k),Uk)),
and it is expressed as the Eq. (7).

% & 96| [1 0 -dkysin(bh)
|2 & | 5
vr=| 5 5 o 0 1 d(k)cos(o(k))

& & 00

In the 4£+1, robot position uncertainty,
Ck+1/k), ku covariance, C(kik), progresses a
geometric relation of WFeCk/k) * vF, and
this means the noise of the control inputs,
dlk) and A& (k), is added.

3.3 Position Estimation Model

3.3.1 Prediction of Sonar Range Value

e

(X,j,yu.)

. -
sensor: _
(x.y!) v Y(k)

Y l robot > 7 o

k step (x(k), y(k))

X

Fig. 5. Global and local sensor locations.

In order to predict sensor ranges at the pre—
dicted robot position, £(k+1/k), the measure—
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ment model should be defined. As shown in
Fig. 5, sensor i is defined as the local coor—
dinate frame, [x%,y5 #%J, that considers robot
center as the origin. This can be converted to
global coordinate frame, [x.(k).y.(&),&s(k)],
using Eq. (8).

x, (k)] [x(k)+x,cosO(k)-y,sin6(k)
¥, (k) = y(k) +x) sinﬁ(k)— v cos0(k)
6,(k) o(k)+6, 8

If the total number of landmarks that sensor
i can detect is r, each position of landmark can
be defined as Eq. (9).

T(k)={(x, (k).3,(K)) | 0< j <7} ©

Since a sonar sensor detects the nearest
landmark, the measurement model can be ex-—
pressed as the Eq. (10).

A (X .70)=min{ i (0=, () + (05, () D15 =}
(10

In the predicted robot position, £&k+1/k),
that can be estimated using the measurement
model defined in Eq. (10), the sensor i will
predict the range reading as,

& (k+1/k) = (X (k+1]k),T (k +1)) (1D

3.3.2 Matching of Sonar Information

This is a process to determine the validity of
an estimated value, which was obtained by the
difference between the predicted observation
measurement and the actual sonar measure—

ment. In Fig. 5, the range of sensor 7, z, can
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be defined as Eq. (12).

z (k) =h (X (k). T(R))+w (k) . w(k)~N(0.R (k)
(12

The Eq. (12) indicates that the sonar meas—
urement is calculated by the addition of sensor
noise to the distance, #;, when sensor 7 at the
position of X(k) shoots a beam to the landmark
Tk). The noise of sensor 7 wi(k), is ex—
pressed as the zero mean Gaussian noise
whose average is O and covariance is defined
R:(k). When the Eq. (12) is applied to the
predicted position, £(k+1/k) can be expressed
using Taylor series such that;

z(k+1) =k (Xk+16).T(k + 1)
o s _
+5(—[X(k +1|k)= X(k +1) |+ highorderterm + w, (k +1)

(13)

If the high order terms except the first order
term in the Eq. (13) are neglected, then the
equation is linearized as,

z(k+1)=h, (,\"(k+1|k),r(k +1))
+Vh [ & (k1) - X (k+1) ]+ (k+1)
(14)

In Eq. (14), ©h; is Jacobian of the measure—
ment model, hi, and it is shown in Eq. (15). d
is the closest distance from the predicted sen—

sor position.
r
( X, -x,
Vh = 7 ¥, =¥y
[(x,, -, )(x: siné)+ y,cosé+(y, -7, )(-x: oosé)+ ¥ siné]

(15)

To determine a validity of the predicted ob—
servation measurement, the difference of
zitk+1) in Eq. (14) and 2itk+1/k) in Eq. (11)
should be calculated.

Z(k+1)=z,(k+1)— 2(k+1[k)
= Vh [ XGe+1[k)- Xk +1]0) ]+ w, (k+1)
=Vh - X(k+1jk)+w, (k+1)
(16)

The innovation covariance, which is obtained
from the Eq. (16), can be expressed as
sitk+1) in the Eq. (17).

s;(k+1)=Vh -C(k +1|k)-VAT +R(k+1) (17

In Eq. (17), Ri(k+1) indicates the covariance
expressing the sensor noise error. Using the
innovation, z;(k+1), in Eq. (16) and the in—
novation covariance, s;(k+1), in Eq. (17), it
can be evaluated how the predicted observation

and the actual sonar measurement are matched
in Eq. (18) [10].

z (k+1)s] (k+1)z] (k+1) <€ (18)

In Eq. (18), e is a design parameter to be
determined in advance. If matching satisfies the
Eq. (18), it is successful. If there are n sonar
sensors satisfying the Eq. (18) among the
various sonar sensors, the composite innovation

can be expressed as following.

z,(k+1)- 3, (k +1]k)
Z(k+1)= :
z, (k+1)- 2, (k +1[k) (19)

Also the Jacobian of composite measurement
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model of sonar sensors can be expressed as

Eq. (20).

Vh,
VH=| :
Vh 20

n

Using the Eq. (20), the composite innovation
covariance can be induced as Eq. (21).

S(k+1)=VH-C(k+1[k)-VH" + R(k+1)
, R(k+1)=diag{R (k+1) | 15i<n}
2D

In Eq. (21), R(k+1) is Gaussian noise of n
sonar Sensors.

3.3.3 Updating Estimated Position

From the composite innovation -calculated
above, the robot position and its covariance are
updated. The well-known Kalman gain is rep—
resented in Eq. (22)[22].

W(k+1)=C(k+1|k)VH"S™ (k+1) (22)

Using a composite innovation covariance in
Eq. (21) and a Kalman gain, W(k+1), the es—
timated robot position and its covariance are
updated through Eq. (23) and (24).

X(k+1le+1)=X (k+1[k)+ W (k+1)Z(k+1)  (23)

Ck+1k+1)=C(k+1k)~ W (k+1)S(k + )W (k+1)
(24)
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IV. Experiment and Results

4.1 Experimental Setup and Method

3
4”({.1’&
]

w

$ s

= 3

st
A {
}'_f“ o 4im __’l
X

Fig. 6. Experimental environment and the
robot's path.

The mobile robot used in the experiment was
the Pioneer 3-DX built by the ActiveMedia
Robotics Company. This robot consisted of two
driving wheels and one non—driving wheel. The
traveling distance is measured with two en—
coders mounted on each driving wheel. A gy—
roscope was used to measure the rotational
angle of the robot. A sonar ring of 16 sensors
was mounted on the top of the robot. The ex—
perimental environment was composed of a ta—
ble in the middle of the environment and rec—
tangular walls. That was because a table and a
wall could be used as a landmark. The robot
was run 6 times along the arrow direction in
Fig. 6 with a velocity of 0.05m/s, and the data
scanning frequencies were 2 Hz. The size of a
grid is 4cm*4cm, and the aperture of sonar
sensor was assumed to be 225" . Total
42,288 sets of sonar data were acquired from
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2643 different robot's positions, and the flow—
chart of the localization is shown in Fig. 7.
During the first run around the environment,
the robot executed map building, landmark se—
lection, and position estimation simultaneously.
The rest of navigation was performed based on

the landmarks selected during the first run.

e ™ L ﬁ
( i~ ==
=) |
j( ‘*‘a = ,‘q w j{k*“) =f(’i(qk)'q‘»
dieti=ciip) e+ 4)=9- (4477 +a0
1 T
imj ™ . i\/v L /\ﬁ/\>
Prpav (it \
) ) [k
- P | Ak+y :
Arslrr)=A(k+0) i WAtk {4+
i<y | Sevl) =S ) B )
— | k) ()
B e [
Kb+ fhrt) =Rk ) + R+ (k4
—@— k)=l -+ S+ )W k4D

Fig. 7. Flowchart for grid—based localization
using EKF algorithm.

4.2 Experimental Results

L = AEVY

(a) Initial grid—base map.

T J— . -4
¥ P T Ty

o, ey g e = e ¢

-

(b} Selected landmarks from the initial map.

Fig. 8. Experimental grid—based map and
selected landmarks after 1st run.

(a) Experimental results of the odometric
positions.

Qs

(b) Experimental results of estimated positions.

Fig. 9. Experimental results of localization.
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Fig. 8(a) is the constructed grid map when
the robot has completed the first run around
the experimental surroundings. Looking at the
result, it can be said that the probabilities of
occupied region and those of empty region are
quite different. Fig. 8(b) shows the selected
grids as landmarks after the first run. The
comparison between the odometric and esti—
mated trajectories are shown in Fig. 9. As
shown in the figure, the trajectory from the
odometry is distorted due to the accumulated
position and heading error of the robot. Fig. 10
shows the resulting maps after 6—th runs,
which shows the performance of the local—
ization based on the selected landmarks shown
in the Fig. 8. The qualities of the two maps
are also quite different, which means the pro—
posed method can be applied effectively for
localization of a mobile robot. The position and
angle errors during the navigation are shown in
Fig. 11. The angle and position errors with
only odometry grow over time, while those

from estimated positions are bounded.

(a) Map building result using odometric
posions.

86

p Atk X

\
SR

(b} Map building result using estimated
positions.

Fig. 10. Map building results after 6th run.

V. Conclusion

In this study, grid map based localization was
presented that is able to continuously estimate
the robot's position using sonar data. We have
developed a technique for a grid—based local—
ization of a mobile robot with ultrasonic sen—
sors using EKF (Extended Kalman Filter). For
this, we used grids themselves as landmarks of
the environment. The grid—based localization
can minimize the use of computer resources
for localization because this approach does not
rely on exact geometric representation of a
landmark. The grid map based localization al—
gorithm is similar to the feature based local—
ization in a way that it also uses the extended
Kalman filter. However, the process of this
technique is much simpler than the feature
based localization method because the grid map
does not require a specific geometric landmark.
The paper also presented the extraction meth—
od of robust landmarks from a grid map.

Experiments were performed in a real envi—
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ronment to verify the methodology developed
in this study, and the results have shown that
the grid—based localization can be useful for a
practical application.
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Fig. 11 Characteristics of position error.
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