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ABSTRACT

Electrical impedance tomography (EIT) is a relatively new imaging modality in which the internal

impedivity distribution is reconstructed based on the known sets of injected currents through the electrodes and

induced voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case

where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set

of independent measurement data. In doing so. the inverse problem is treated as the nonlinear state estimation

problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a

minimum mean square error sense. In particular. additional electrodes are attached to the known internal

structure of the object to enhance the reconstruction performance and generalized Tikhonov regularization

technique is employed to mitigate the ill-posedness of the inverse problem. Computer simulations are provided

to illustrate the reconstruction performance of the proposed algorithm.
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. INTRODUCTION

Over the past few decades. electrical tomography
(ET) techniques have received much attention from
both theoretical and experimental points of view
since they can be used as an alternative imaging
modality for monitoring tool in many fields of
engineering. This is mainly due to the relatively
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cheap electronic hardware requirements. noninvasive
measurement sensing. and relatively good temporal
resolution' ™.

In electrical impedance tomography (EIT). the
quantity to be imaged is actually the impedivity
(inverse of admittivity) so that it includes both
electrical capacitance tomography (ECT) and
electrical resistance tomography (ERT). However,
more frequently in EIT it assumed that the resistive
part of the impedivity dominates and estimate only
the resistivity (inverse of conductivity) distribution
inside the object. The physical relationship between
the internal resistivity and the surface voltages is
governed by a partial differential equation (Laplace
equation) with appropriate boundary conditions.
Owing to the complexity of this relationship. it is in
most cases impossible to obtain a closed-form
solution for the resistivity distribution. Hence.
various  reconstruction  algorithms have  been
developed in the literature to estimate the internal
resistivity distribution of the object.

However, most of the reconstruction algorithms
presented so far are mainly focused on the case
where the internal resistivity of the object is
time-invariant within the time taken to acquire a
full set of independent measurement data. As is well
known. the conventional EIT imaging techniques
such as backprojection or modified Newton-Raphson
(mNR) algorithm wuse a full set of voltage
measurements for each image'”. However. in some
real applications such as biomedical and chemical
processes. these static imaging techniques are often
fail to obtain satisfactory temporal resolution for the
reconstructed images due to the rapid changes in
resistivity.

More recently. dynamic imaging techniques have
been developed to enhance the temporal resolution of
the reconstructed images in the situations where the
resistivity distribution inside the object changes

rapidly in time. In most of these techniques. the

inverse reconstruction problem is treated as state
estimation problem and the time-varying state is
estimated with the aid of linearized Kalman filter
(LKF)"™" or extended Kalman filter (EKF)'"".
Quite often in real situations. there are partially
known fixed internal structures inside the object.
These internal structures can be, for example. an
impeller drive shaft or a mixing paddle in process
vessels and an assembly of fuel rods in nuclear
reactor. The internal structures inside the object
may results in  difficulties in the image
reconstruction in EIT especially in the case where
the high resistive region is near the conductive
internal structure or vice versa™*. The so-called
masking effect in the reconstructed image may be
significant for the high-contrast case. There are two
ways to get around these difficulties: the one is to
additional

use the internal  structure as

electrodes™™*' and the other is to take into account
it as a priori information in the inverse procedure'*’.
However. all of the above approaches are for the
case where the resistivity distribution inside the
object is time-invariant for one classical frame.

The purpose of the present work is to develop a
dvnamic EIT reconstruction algorithm for the case
where the resistivity distribution inside the object
changes rapidly within the time taken to acquire a
full set of independent measurement data. To
achieve the purpose. additional electrodes are
attached to the known internal structure. The
inverse problem is treated as the state estimation
problem and the unknown state (resistivity) is
estimated with the aid of the EKF in a minimum
mean square error sense. In other to deal with the
well-known ill-posedness of the EIT inverse problem.
smoothness assumption is made and the generalized
Tikhonov regularization technique is also introduced
in the cost functional.

We carried out extensive computer simulations
with synthetic data to illustrate the reconstruction

65



Suk-In Kang, Kyung-Youn Kim, Ho-Chan Kim, Won-Churl Cho, Min-Chan Kim, Sin Kim and Heon-Ju Lee and Yoon-joon Lee

performance, and to investigate the effects of
additional internal electrodes on the spatial and
temporal resolution of the reconstructed images.

Il. INVERSE SOLVER BASED ON THE
EXTENDED KALMAN FILTER

In case where the resistivity distribution inside
the object changes rapidly within the time taken to
acquire a full set of independent measurement data,
the conventional imaging techniques which need a
full set of voltage measurements for each image
often fail to obtain satisfactory temporal information
on the resistivity distribution. We consider the
underlying inverse problem as a state estimation
problem to estimate rapidly time-varying distri-
bution of the resistivity. In the state estimation
problem. we need so-called the dynamic model
which consists of the state equation. ie. for the
temporal evolution of the resistivity and the
observation equation. ie. for the relationship
between the resistivity and boundary voltage.

In general. the temporal evolution of the
resistivity distribution o, in the object 2 is related
by the nonlinear mapping. Here, the state equation
is assumed to be of the linear form, of which the
modeling uncertainty is compensated by the process

noise
Pes1 = Fyp o+ w, (N

where F, €RY™ is the state transition matrix at
time & and N is the number of finite elements in
the FEM(finite element method). In particular, we
take Fy,=1Iy where Iy€R™ is an identity
matrix, to obtain the so-called random-walk model.
It is assumed that the process error. wi is white
Gaussian noise with the following covariance which

determines the rate of changes in resistivity
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distribution
V= Ewe w]) (2)
Let U, €ER. defined as
U=lUiUi. . Ui’ (&)

be the surface measurement voltages induced by the
K" current pattern and L is the number of electrodes
attached on the surface of the object. Then the
observation equation can be described as the
following nonlinear mapping with measurement error

Ue= Vilps) + v, (4)

where the measurement error v is also assumed to
be white Gaussian noise with covariance

Ti= Euv,- o]l (5

Linearizing (4) about the current predicted state

© 4e—1 We obtain

Ue = Vilow-1) + Tlowe-1) - (0= On-1)

where H.O.T represents the higher-order terms which
will be considered as additional
noise. and J{ pu-)€ R Y'Y is the Jacobian

matrix defined by

— aVk -

]k( Puk41)= 30 | o ou (7)
Let us define the pseudo-measurement as

Y=Ue— Vilowe )+ Jlowe-1) * Pus- (8)

Then we obtain the linearized observation equation
by considering the £ Q.7 in (6) as additional noise

e = Jlows 1) - 0e + V_k (9)
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where vi is composed of measurement error and
linearization error and also assumed to be white

Gaussian noise with covariance as

Te = E[vevi ] (10)

In Kalman filtering we estimate the state p,
based on all the measurements taken up to the time
k. With the Gaussian assumptions the required
estimate is obtained by minimizing the cost
functional which is formulated based on the above
state and observation equations (1) and (9).
respectively. The cost functional for the conventional

Kalman filter is of the form

+ -J

7] 1 _ : . . '
CHP=30 P Prgr i ST Pk P gyt

kk-1
(1

where Cu ;= R s the time-updated error

covariance matrix. which is defined by
Cria = EUPy = P NPy = Pip )] (12)

In order to mitigate the inherent ill-conditioned
nature of the EIT inverse problem. additional

constraint is included in the cost functional

Gh(Pk)=%H| Pi — Pii ”c.’. ‘ e =Sl P} s ”“:,, |
+allR'p, I} (13)

where « is regularization parameter which is chosen
a posteriori and R is modified regularization
matrix. One popular conventional method for the
choice for the regularization matrix R is a
difference-type matrix on the basis of the generalized
Tikhonov regularization techniqueg' by the the
smoothness assumptions in resistivity distributions.
In this method. the resistivity distribution is

parameterized such that

N
P=3 02,
n-l

where X» is the characteristic function of the n"

finite element. The /™ row of R is

R’ =(0,0,..0,-10,..,0,-1,0,...,0,3,0,..,0,—1,0,..0)
(13)

where 3 is located at the /* column and -1 is
placed in the columns corresponding to elements
having common edge with the /" element. Sometimes
in real situations. there are partially known internal
structures in which additional electrodes can be
attached. In this case. the regularization matrix R’
is obtained from R by removing the -1 in Ref. 9
that corresponds to element having common edge
with the known internal structure. In that case. the
number 3 in (15) is also replaced by 2 siace the
smoothness assumption is violated between the

known element and background.

Define the augmented pseudo-measurement

7. e R(Lo\'lxl .

Vi . and pseudo-measurement matrix.
(L+ N)xN

H,eR as

7, = Vi
1o (16)

H, = /s
T Var an

Then the cost functional. (13) can be rearranged as
G(Pk )= % {” Pe = Pria ”(';L. + “ .Vr - Hkpk H(r, )t !
(18)

where the augmented covariance matrix.

Toe RN s defined by
T, = Blockdiag[T+./, ] (19)

Minimizing the cost functional in (18) and solving

for the updates of the associated covariance matrices
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we obtain the recursive extended Kalman filter
algorithm which consists of the following two steps" -

(i) Measurement Undating Step (Filtering)

Gy = CoaH{[H,Cpu . H] +T, 1" (20)
CHr =([_GkHt)Ckk~l 21)
Pis =pkt~l+Gk[;k-.Hk'pkk~l] (22)

(i) Time Updating Step (Prediction)
Coni = FkCMFkT +I) (23)
Proe = FePup (24)

Hence. we can find the estimated state pu for
the true state o, in a recursive minimum mean
square error sense for k=12..rK. where K is the
number of the independent current patterns and r is
the number of the classical frames. As a result. the
only difference between the conventional EKF and
the proposed EKF which includes a priori
information for the partially known internal
structure is that the dimension of the measurement
updating procedure is increased.

ll. COMPUTER SIMULATIONS

We carried out extensive computer simulations
with synthetic data to evaluate the reconstruction
performance of the proposed algorithm. In the
simulations, the complete electrode model with the
contact impedance of 0.00582cm is employed.

The FEM meshes without internal electrodes used
for the forward and inverse solvers are shown in Fig.
1 (a) and (b). respectively. In the forward
computations we used the FEM with a mesh of 2400
elements and 1281 nodes. In the inverse computations.
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we used the FEM with a mesh of 600 elements and
341 nodes to reduce the computational burden. For
the current injection and corresponding voltage
measurement. traditional adjacent method’' was
employed through 16 boundary electrodes(L) so that
the total measurement voltage data were 256(16x16).

The FEM meshes with 4 internal electrodes used
for the forward and inverse solvers are shown in
Fig. 2 (a) and (b). respectively. In the forward
computations we used the FEM with a mesh of 2544
elements and 1368 nodes. In the inverse computations,
we used the FEM with a mesh of 636 elements and
366 nodes. We injected electrical current between 16
boundary electrodes and one of the internal electrodes
and measured the corresponding voltage on the 20
electrodes(L) so that the total measurement voltage
data were 320(20x16).

o o
el S w
(a) §)]

Fig. 1. FEM meshes without internal electrodes used
for (a) forward solver and (b) inverse solver.
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Fig. 2. FEM meshes with 4 internal electrodes used
for (a) forward solver and (b) inverse solver.
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To compare the reconstruction performance, We
used the static algorithm based on the modified
Newton-Raphson algorithm with internal electrodes
(mNR-IE)'™, dynamic algorithm based on the
extended Kalman Filter (EKF)'™. and the Extended
Kalman Filter with internal electrodes (EKF-IE)
described in this paper. The parameters used for the
three methods are as follows. The regularization
parameter( @) is set to 0.5 in both simulations. The
initial resistivity value is set to the same as the
background value in all cases. For simplicity, it is
assumed that the covariance matrices for all the
EKFs are diagonal and time-invariant. The

covariance matrix for process noise( I"y ) is 10/y.
the covariance matrix for measurement noise( I' ; )

is 0.00017; and the initial value for the state error

covariance matrix ( C ;o ) is Iv in both simulations.

3.1. The First Simulation

We generated the following sequence of resistivity
distributions to simulate a dynamic situation. We
assumed that there is known non-conductive circular
structure (about 2 c¢m in diameter) located at the
center of the domain. in which four electrodes are
attached.

An almost circular-type target (resistivity of
600Qcm) was moved abruptly to the opposite site
through near the center after 4 current patterns in a
circular  domain(8cm in 300Q2cm
background resistivity) as depicted in the first

diameter.

column of Fig. 3.

Fig. 3 shows the reconstructed images for the
three methods. The images in the second column are
reconstructed by the EKF without internal
electrodes. As can be seen clearly. the location
(temporal resolution) of the moving target is rather
misleading especially when the target is located near
the non-conductive center of the domain(2 and 3"

(a) (b) (c) (d)

Fig. 3 Reconstructed images from the first simulation.
(a) True target images. (b) reconstructed
images by the EKF. (¢) reconstructed images
by the EKF-IE and (d) reconstructed images
by the mNR-IE.

rows in the 2™ column). It seems that the error
may be generated from the masking effect for the
high-contrast. Also. the background was severely
blurred by the non-conductive circular structure. The
third column represents the reconstructed images
from the EKF-IE. As can be expected. the
reconstruction performance is improved qualitatively
in terms of the temporal and spatial resolution. The
reconstructed images obtained from the mNR-IE
(fifth column) are also blurred and the information
on the time-variability of the moving target is lost
since it requires a full set of measurement data.

3.2. The seoond simulation

In the second simulation. we assumed the same
scenario for the internal structure as in the first
simulation. However. an almost circular-type target
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(resistivity of 6002cm) was moved abruptly by %0°
clockwise after every 4 current patterns in the same
circular domain as in the first simulation (the first
column of Fig. 4).

(a) (b) (c) (d)

Fig. 4. Reconstructed images from the second
simulation.
(a) True target images. (b) reconstructed
images by the EKF. (c) reconstructed
images by the EKF-IE and (d)
reconstructed images by the mNR-IE.

Figs. 4(b). (¢} and (d) represent the reconstructed
images obtained by the EKF. EKF-IE and
mNR-IE. respectively. As can be seen. the images
reconstructed by the EKF without internal
electrodes are severely blurred in the homogeneous
region (the second column). However, the
reconstruction performance of the images obtained
by the EKF-IE is enhanced qualitatively(the third
column). Also. the temporal information for the
abruptly changing targets is severely lost in the
reconstructed images by the mNR-IE (the fourth
column).
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IV. CONCLUSION

Quite often in real situations, there are partially
known fixed internal structures inside the object, in
which additional internal electredes could be
attached. We have proposed a dynamic EIT
reconstruction algorithm for the case where the
fixed internal structure are known partially and the
resistivity distribution of the other part inside the
object changes rapidly within the time taken to
acquire a full set of independent measurement data.
In doing so. additional internal electrodes are
attached to the known internal structures. EIT
inverse problem is formulated as a state estimation
problem and the state (resistivity distribution) is
estimated with the aid of the EKF after the
voltage measurements corresponding to each current
pattern.

Computer simulation results showed that the
proposed method produces qualitatively better
reconstruction performance in the sense of the
spatial and temporal resolution than do the other
existing methods such as conventional EKF and
mNR.
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