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A Numerical Analysis on Heat Inflow into
a Rectangular Cavity
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ABSTRACT

A numerical experiment about thermal discharge into a rectangular shaped enclosed body of fluid that has
one inlet and one outlet jet has been carried out. Three two-dimensional partial differential equations (the heat
transport equation, vorticity transport equation and stream function equation) that are coupled by the nature of
the problem were solved by using the Alternating Direction Implicit method and Successive Over-Relaxation. A
computer program was developed on the basis of these algorithms to give the temperature and velocity
distribution at each time step. The results are then reviewed in terms of the physical parameters involved. The
numerical stability of the scheme is also discussed.

Depending on the actual boundary conditions, the numerical results obtained could provide some information
to predict the flow pattern and thermal penetration within the lower convective zone of a salt-stratified solar
pond as well as inside the heat storage units of other heat collection systems.
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| Introduction recent years, since it describes the physical phenom-

enon that arises in the lower convective zone of a

The problem of thermal discharge into an enclosed saltstratified solar pond associated with decanting

body of fluid has drawn a great deal of attention in schemes and in other heat storage units of solar

thermal systems. Quite a number of papers were
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published, which employed the numerical experiments
to probe and understand this natural phenomenon.
Most of the studies carried out the analyses on a
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rectangular shape of fluid body with at least one
inlet and one outlet jet for various boundary
conditions. Cabelli’”’ set up a two-dimensional model
to simulate the motion which takes place in storage
tanks. He tried to test the wvalidity of the
one-dimensional model. A one-dimensional model has
been often used to simulate solar water heating
systems. Newell? developed an explicit finite
difference numerical model capable of solving
transient. double diffusive fluid problems within a
cavity. He examined the transient effects of
decanting schemes within the storage zone of a solar
pond. However., warns the propagation of
catastrophic instabilities which might rise from such
restricted boundary conditions.

The effect of inlet and outlet jet placement is
extensively studied by many. since the characteristics
of the flow field largely depend wupon the
arrangement of the jets.

There are certain simplifying assumptions that
have to be made regarding the motion and
dynamics of flow, otherwise the mathematical
relationships which describe the effect of forced and
natural convection are too difficult to solve. The
two-dimensional flow assumption and Boussinesq
approximation are those frequently introduced to
meet this purpose. Assuming the motion of fluid
being two-dimensional might raise some skepticism.
Jaluria and Cha'’ have explained the validity of
this assumption in detail : "The two-dimensional
flow assumption is made since it is desirable to
spread out the flow over the entire storage region
and keep the flow velocities low, particularly in a
solar pond where large velocities could lead to the
destabilization of the gradient zone. In practice, the
flow will tend to be three-dimensional near the inlet
and outlet. But if several inlet and outlet ports are
positioned linearly. the flow will be largely
two-dimensional in most of the flow region. ™ The
Boussinesq approximation is used by many to
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account for the buoyant influence in the momentum
equation, which assumes the density to be constant
everywhere except as it affects the buoyant forces.
Even though the fluid motion is the result of
density variations, these variations are quite small.
and a satisfactory solution to the problem may be
obtained by assuming incompressible flow®.
Leonardi and Reizes® showed the accuracy of this
assumption in their numerical experiment on the
convective flows in closed cavities. They also showed
how accurate it is to assume constant properties
with Boussinesq approximation.

The primitive forms of the governing equations
involved in this problem could be reduced in terms
of stream function and vorticity by doing several
steps of mathematical manipulation to eliminate the
pressure terms in the momentum equations. These
alternative forms of the governing equations
constitute the stream function-vorticity formulation,
which is employed in the following analysis to
pursue the numerical experiment. However. some of
the analyses have been carried out with the
primitive forms of the governing equations rather
than the stream function-vorticity formulation. Four
equations (two momentum equations. continuity
equation and heat transport equation) have to be
solved if primitive variables (velocity, pressure) were
used while the stream function-vorticity formulation
needs only three equations to be solved. These are
the vorticity transport equation, heat transport
equation and stream function equation. The stream
function equation has the form of the so-called
Poisson equation. The striking advantage of the
stream function-vorticity formulation is the fact that
only one momentum equation be treated.

The Alternating Direction Implicit method (ADI
method) is one of the most widely used algorithms
to solve the transport equations of the stream
function-vorticity formulation. This method was
introduced by Peaceman and Rachford'” in 1955.
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The basic feature of this method is the changing of
rows and columns for each successive time step so
that, numerically speaking, the difference expression
of a partial differential equation is implicit in one
direction at the first time step and in the other
direction at the second time step. The advantage of
this approach over the fully implicit methods is that
although
tri-diagonal. In other words. the method requires

each  equation, implicit, be  only
only the solution of a tri-diagonal system which
occurs only for usual implicit methods in one
dimension. This reduces the overall computation
time to a fraction of what would be needed if fully
implicit method were used.

While the ADI method provides numerical means
to solve the transport equations relatively easily, the
iterative technique of Successive Over-Relaxation
(SOR) could handle the Poisson equation without
excessive roundoff error problems. The SOR method
usually saves computation time by accelerating the
already convergent iterative process.
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Fig. 1 The geometry of the problem

The physical situation and the coordinate system
chosen for the analysis are illustrated in Figure 1.
Besides the configuration shown. various cases are
considered for the placement of the jets. The fluid is
initially motionless and at a uniform temperature of
T.. The objective of the analysis is to observe the
development of the flow field and the temperature
distribution within the fluid body due to the sudden
onset of the jets. The governing equations involved
are given as:

momentum equation

_du du du
+ u +v—5-
“at “ox ay N
1 a 3_
e ox tv ( ayz )
v du u
‘tu—5-+v—o-
"ot ox dy )
=L, By, 0 3+ htt— 1)

energy equation

T 8T T 8:T | 8°T
TR ax+vay a(ax2+ 7) (3)
continuity equation
Quy 0 (@)

These equations are derived on the basis of the
following assumptions:

(a) The flow is two-dimensional and laminar.

(b) The physical properties of the fluid are constant
except as they affect the gravitational term in
the y-direction momentum equation (Boussinesq
approximation).

(c) Viscous dissipation and compressibility effects
are neglected.

The boundary conditions for the above equations
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could be imposed in many ways. However, rather

simpler cases are considered as follows:

(a) The flow is uniform with a velocity U at the
inlet and outlet jets.

{b) The temperature at the inflow is known as T.

(c) There is no slippage at the walls.

(d) The enclosure is totally insulated.

If the heat storage zone of a salt stratified solar
pond is simulated, zero shear would be more
suitable than the nonslip condition for the upper
surface. The pressure terms in equations (1) and
(2) may be eliminated by several steps of
differentiate
equations (1) and (2) with respect to y and x

mathematical manipulation.  First,

respectively. Second, subtract (2) from (1) and
apply (4). This gives the following equations:

0 (Ou _ dv _aﬂ_ﬂ
( 8x)+uax( )+

d (0w _ dvy_ 8% du_
”ay( ay ax)‘”[ax dy )+
9° (du _ dv T

ayz(ay ax)] ﬂax

Finally. the introduction of vorticity w called
v _ _du

vorticity w= ox " ox produces the  so-called
vorticity transport equation:
dw w
+uZl +v
ot a 8y (5)
0w
= +
v ( ax?

The two-dimensional flow assumption enables the
application of the stream function into the problem
and produces the following additional equations:

_ _0¢ —__ _0¢
u= Jy' U= o (6)
2 2
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Equation (7) is obtained by merely incorporating
equation (6) with the definition of vorticity. which
is an elliptic Poisson equation. The equations are
now nondimensionalized in terms of the following
dimensionless variables

o o= _Y
Ve YR
go T-Ty ¢
T,—T," " dy’
T acd)
- _¢ . @_
=30 2=U/

The nondimensional forms of the governing
equations are :

vorticity transport equation
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stream function equation
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The transport equations in their nonconservative
forms, 8(a) and 9(a), are likely to result in an
appreciable disturbance of the heat-flux balance at
the boundaries of the computation region for
strongly nonuniform temperatures. For this reason

( START )

SET INITIAL
CONDITIONS

le
SOLVE STREAM
FUNCTION EQUATION

CALCULATE
VELOCITIES

:

SOLVE HEAT
TRANSPORT EQUATION

A

SOLVE VORTICITY
TRANSPORT EQUATION

VORTICITY
CONVERGED?

the divergence forms 8(b) and 9(b), which are
conservative. are used. The wvorticity and heat
transport equations are parabolic. while the stream
function equation is elliptic. The equations are
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The equations (8). (9 and (10) are solved by
methods with the following

nondimensionalized boundary conditions :

numerical

u(X,Y,00=v(X,Y,00= &X,Y,00=0
u(X,0,0=v(X,0,0=&X,0,00=0

V(X H/d,0 =39 (X, H/d, ) =0
WX, H/d,0=0 o -9%(X,H/d, =0
v(0,Y,9=-220,Y,0=0

u(0,Y,0)=0 except at the inlet where
u=1
6=1 at the inlet

V(LA Y, 0=—22(L/d, ¥, 9 =0

V(L/d,Y,r)=0 except at the outlet where
u=1

Finite differences are used to approximate the
equations and the boundary conditions. These
approximations are then applied to a finite number
of grid points including the boundaries. The
transport equations are solved by the Alternating
Direction Implicit method.

Il Finite Difference Scheme

The solution domain is divided into a finite
number of uniform rectangular grids. An
approximation to the solution will be obtained at
grid points whose coordinates are denoted by the
integer variables i and j where

X={1l-1DdX 1<igM,
Y=(G-1D4Y 1<j<N,
AX=L/(M-1)d

and

4Y =H/(N—1)d.

Let k denote the number of time steps and 4r.
the size of the time step. Values of variables at grid
points are denoted by using i, j (subscripts) and

5

k(superscript).

The calculation of temperature and vorticity fields
at r=(k+1)dr requires the knowledge of these
fields at r=kdr Suppose that all quantities are
known at a time r=kdr(k=0 corresponds to the
initial condition). The ADI method is employed to
advance the temperature and vorticity fields across
a time step Jr to the new level (k+1)dr .

IV. Results and Discussion

The two-dimensional numerical scheme employed
here has predicted the rapid establishment of the
flow field. This could be easily seen by examining
the development of the stream function field. Once
the flow field is established, it changes very little as
time elapses. Figures 3 and 4 show such
development. To reach * = 1.0 (dimensionless time)
with an increment of r = 0.0005. 3.7 hours of CPU
time were consumed. With = = (.0001, 16 hours of
CPU time were needed. Here all the numerical
results are generated on a 41 x 41 grid system.

Fig. 3 Streamlines(time=0.2)
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Fig. 4 Streamlines(time=1.0)

The placement of the inlet and outlet jets is very
important in that it essentially determines the
overall configuration of the flow field. Figures 5. 6
and 7 feature some of the flow field with different
jet placements. If the decanting scheme of a solar
pond is considered, it would be desirable to have
both the inlet and outlet ports on the same side

Fig. 5 Streamlines(time =0.15)

Fig. 6 Streamlines(time=0.1)

Time=0 .08
Sre8157388

rr=8.17

Fig. 7 Streamlines(time =0.05)

rather than placing one of the ports on the opposite
end. This could save the cost of piping considerably.
However. it is likely to extract less energy from the
storage zone unless the horizontal dimension of the
pond is within its maximum thermal penetration
length.

The implicit scheme of ADI seems to have some
restriction on time step (increment) especially when
the method of Wilkes and Churchill® is employed.
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This is mainly due to the lag of wall vorticity
values: Wilkes and Churchill have used the stream
function field of the previous time step to calculate
the wall vorticity values at the next time step.
They assumed that the old boundary vorticities
remain valid for the computation of the new interior
vorticities. As mentioned earlier, the boundary
vorticities are implicitly related to the stream
function field. For large time steps, the solution
eventually converged to an unreasonable solution or
did not converge at all. Here the un- reasonable
solution indicates the physically impossible solution.
Nogotov'®, who developed the scheme used here,
suggests that method is stable if

2 i
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However. should the lag of wall vorticity values be
considered. the time step 4r must be smaller than
this value. Besides the restriction on time step due
to the lag of wall vorticity values. the upwind
difference scheme used here suffers from in-
stabilities when the Grashof number exceeds a
certain limit. This limit for the Grashof number
seems to exist around 10° Once the limit is
exceeded very far, the disturbances start to set in
around the inlet region and propagate throughout
the whole solution domain. Velocities show a total
chaos, changing their signs and magnitudes in a
random manner—this is, of course. due to the
stream function field. Reducing the time step only
delays the occurrence of such catastrophic
instabilities. A parabolic velocity profile. rather than
uniform  velocity, imposed at the inlet has
accelerated the onset of such instabilities about 1.4
times faster. Generally, dynamic instabilities are
caused by large time steps while static instabilities
result from the finite difference scheme employed.
The former can be eliminated by reducing time

%

steps and the latter can be prevented by imposing
some restriction on the Reynolds number as well as
Grashof number. Reducing the effect of buoyancy in
the vorticity transport equation by increasing the
Reynolds number does not necessarily stabilize the
numerical solution . since there is also a limitation
on the Reynolds number. The present scheme was
stable up to Gr = 10" when Re = 250.

Three alternatives were examined to set the values
of vorticities at the sharp convex corners (the inlet
and outlet ports). All three were tested with
uniform inflow and outflow conditions. The first
choice was to set zero vorticities there, since the
upstream {downstream for the outflow) is uniform
flow. The second was to treat these nodes as
singular points and to use downstream (up§tream
for the outflow) values of the stream function in
calculating vorticities there. Finally, the average
values of both the first and second case were used.
In contrast to what was anticipated all three cases
produced almost identical results.

In Figures 8 and 9. the numerical results from the
present scheme are compared with those in the
Figure 2 of Jaluria and Gupta® when Gr = 2500
and Re = 50 (Physically such a small Grashof
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Fig. 8 Stream function vs Y(at X=0.25)
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Fig. 9 Stream function vs Y(at X=0.75)

number and a small Reynolds number have no
significant meaning: when H = 2m., L = 2m, d =
0.lm and the properties of the brine are used, AT
should be less than 0.001C). Each plot shows the
distribution of the stream function field along
vertical direction. As the comparison is made further
downstream from the inflow region. they show better
agreement.

In addition to the implicit upwind differencing
approach discussed above, there were two other
schemes tested to solve the transport equations
during this experiment . One of them was a fully
explicit upwind differencing scheme. This method has
produced very close results with the ADI scheme
finally adopted here. However the method was
abandoned. in spite of its simplicity to program,
because of a severe restriction on time step size. It
took at least as much as six times more CPU time
than the present implicit scheme and was more
susceptible to instabilities.

v . Conclusion

The results obtained throughout this numerical

experiment show good agreement with the previous
investigations. The ADI method used here to solve
the transport equations was considerably faster than
any explicit scheme.

The time lag of boundary vorticities has imposed
a severe restriction on time step (increment) when
the method of Wilkes and Churchill is employed.
However. this method is as fast as the one with a
large time step because the latter requires a number
of iterations over each time step to overcome the
lag of boundary vorticities. There are a number of
problems merged during this numerical experiment.
First of all. it is not certain why the parabolic
velocity profile at the inlet has accelerated (compare
to the case of slug flow) the instabilities when
Grashof number exceeds its stability limit. Second.
there are various ways to set the values of
vorticities for convex (sharp) corners. It is not clear
which one is the best for the case considered here.
Finally, the applicability of a variable grid system
can be examined. the finer ones around the region
where the mass transfer takes place. Grashof number
has little influence in stabilizing the numerical
solution as long as the Reynolds number is kept
high.
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