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ON THE WEYL’S SPECTRUM OF WEIGHT II

YOUNGOH YANG

ABSTRACT. We study the properties of a—Fredholm operators and the
Weyl’s spectrum of weight &, wa(T'), of an operator. We show that similarity
preserves a—Weyl’s theorem and give a condition for an operator to be of the
form unitary+a-—compact. We also introduce the class W, for any cardinal
a and study its properties.

0. Introduction

Throughout the paper, H denotes a fixed (complex) Hilbert space of
dimension h > R, the cardinality of the set of natural numbers and we
write B(H) for the set of all bounded linear operators on H. For each
cardinal a with g < a < h, let I, denote the two-sided ideal in B(H) of
all bounded operators of rank less than a and let J, denote the uniform
closure of I,. Then the J, are precisely the proper closed two-sided ideals
of B(H). Of course, Jy, is the ideal of compact operators and Jj is the
maximal closed two-sided ideal of B(H). If R < a < 8 < h, then 3, C Jp
and J, # Jg. For each operator T, T denotes the coset T' + J, in the
C*—algebra B(H)/J,. The ordinary spectrum of the canonical image T of
T in the quotient C* —algebra B(H)/3J, is called the spectrum of T' of weight
o and denoted by o,(T). That is, 0,(T) is the collection of all complex
numbers A such that T' — Al is not invertible modulo J,. Hence o,(T) is
nonempty and compact [3]. m4(T) is used to denote the approximate point
spectrum of T'. If T is a—compact, i.e., T € Jq, then oo(T) = o(T) = {0}.
Since J, are self-adjoint ideals, Re 0,(T) = {0} = 04(Re T).
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In [7], Yadav and Arora defined the Weyl’s spectrum of weight c, ws(T'),
of an operator T on H by

we(T) = Nker,o(T + K).
We say [7] that a— Weyl’s theorem holds for T if
o(T) — wa(T) = moa(T)

where 7o, (T") denotes the set of all isolated eigenvalues of multiplicity less
than a. For each operator T, wo(T') is a nonempty compact subset of o(T’)
[See Theorem 2.1}, and if T is normal then 04(T) = wa(T) = 7a(T) [3,
Corollary 4.7.1]. 0 ¢ wo(T) if and only if T is of the form S + K, where S is
invertible and K € J,. Again it follows from the selfadjointness of the ideal
Ja that we(T) = we(T*) for any operator T.

In [8], Yang introduced the class W of operators as follows: A bounded
linear operator T in B(H) is said to belong to class W if

0(T) =w(T) ,

where 0.(T") denote the essential spectrum of T. Motivated by this we say
that a bounded linear operator T in B(H) belongs to class W, if

0a(T) = wo(T) .

If T is a normal operator then o4(T) = wo(T) [3]-

In this paper, we study the properties of a—Fredholm operators and the
Weyl’s spectrum of weight o, w,(T'), of an operator. We show that similarity
preserves a— Weyl’s theorem and give a condition for an operator to be of the
form unitary+a—compact. We also introduce the class W, for any cardinal
a and study its properties.

1. a-Fredholm Operators

We recall ([3]) that a subspace K of a Hilbert space H is called a-closed
if there is a closed subspace L of H such that L C K and dim(K NL') < a
and an operator T on H is an a-Fredholm operator if v(T) < a, p'(T) < a

and range of T' is a-closed, where v(T') is nullity of T and p'(T) is corank of
T.
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Theorem 1.1. Let T and S be commuting operators in B(H). Then
TS is an a-Fredholm operator if and only if T and S both are a-Fredholm
operators.

Proof. Let T and S be a-Fredholm operators. Since an a-Fredholm oper-
ator is invertible modulo J, [3], there exists an operator 77 such that

FL=1-TTh€J,, and Fo=I1-T1T € J,.
Also there exists an operator S; such that
F3=1-5S,€3,, and Fy=I-5,5€ J,.
Then
T'S$1ST =TI — Fy)T =ThT —- ThF,T
=I—F2—T1F4T=I—F5

STT;S; = S(I - F)S;
=[-F;-SFS$T=I-Fs,

where Fs and Fg are in J,. Hence by [3] ST is an a-Fredholm operator.
Conversely, let ST be a-Fredholm operator. Since ST =T'S,

N(S)U N(T) C N(ST), and N(S*)UN(T*) C N(ST)*.
Thus dim N(S) < dim N(ST) < a and similarly
dim N(T) < a, dim N(S*) < @, and dimN(T*) < a.

Since T'S is a-Fredholm operator, by [3] TS is bounded below on some closed
subspace K of codimension less than «. This means that

ITSz|| 2 ellz|l, z€ K
where dim K+ < o. Since ||TSz || < ||T|]|| Sz ||, for each z in K
ISzl 2 ellTII7 =l -

Hence S is bounded below on a closed subspace K of codimension less than
a. Therefore by [3] R(S) is a-closed. Similarly we can prove that R(T) is
a-closed. Hence T and S are a-Fredholm operators. O
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Theorem 1.2. Assume that S and T in B(H) are such that TS is an
a-Fredholm operator. Then S is a-Fredholm operator if and only if T is
a-Fredholm.

Proof. First, we assume that S is a-Fredholm. Then by [3] there exists an
operator S; such that

I—515=F1, and I—SSl=F2

where F|, F, € Jo. Now SS; = I — F,. Therefore TSS, =T — TF;.

Now S; is a-Fredholm operator as S is invertible modulo J,. T'S is o-
Fredholm operator by hypothesis. By necessary part of Theorem 1.1, T'SS;
is a-Fredholm operator. Since TF; is in J,, T is a-Fredholm operator. By
the same argument, if we assume that 7" is an a-Fredholm operator, then S
is a-Fredholm. O

Theorem 1.3. Let S be an a-Fredholm operator. Then there is ane > 0
such that for any T in B(H) satisfying ||T || < e, S+ T is also a-Fredholm.

Proof. By [3], there exists an operator S; such that
I—-SSl=F1, and I—515=F2
where F, I, are J,. We note that S; # 0. Also

Sl(S"rT)=S1S+51T=I—-F2+51T,
(S+T)Sl=551+T51=I—F1 +TS;.

Take € = || Sy || ™. Then for T satisfying || T || < ¢,

IS1IT < SIT] < 1.

Similarly | TSy || < 1. Thus the operator I +T'S; and I + S;T have bounded
inverses. Consequently

I+ S$1T)'S1(S+T)=1-I+8,T)" ! F,
(S+T)S1(I+TS) ' =I-FRH{I+TS)™ .

Therefore by [3] S + T is a-Fredholm. O
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2. a-Weyl’s spectrum
Theorem 2.1. ([7]) For any operator T, wo(T) is a nonempty compact
subset of o(T).

Proof. That w,(T) is a compact subset of o(T) follows from the definition.
We claim that 64(T) C we(T). Let A € 04(T). Then T'— Al is not invertible
in B(H)/J4. Let X ¢ wa(T). Then T — AI = S + K, where S is invertible
and K € J,. Hence T — M = §, where S is invertible in B(H)/3,,
contradiction. Hence A € wq(T'). Thus w,(T) is a nonempty compact subset
of o(T). O

Lemma 2.2. ([7]) For an arbitrary operator T and a polynomial p,
wa(p(T)) C p(wa(T))'

However, if T is normal then for any continuous function f on o(T),
wo(f(T)) = f(wa(T)).

Proof. Suppose p ¢ p(we(T)). Write
PA) —p=aA =)A= A2) - (A= Ap).

For each j, p(A;) = u ¢ p(wa(T)). Then A; ¢ wa(T) and therefore T — \; =
Sj + Fj for each j, where S; is invertible and F; € J,. Hence

p(T) — pl =a(S1+ F1)(S2 + F3) -+ (S + F},)
= S + F, say

where S is invertible and F € J,. Hence p ¢ wq(p(T)) and so wu(p(T)) C

p(wa(T)). )
Now if T' is normal, then wo(T) = 04(T)([3], Corollary 4.7). Also T is

normal in B(H)/J,. Hence by C*—algebra theory, f(T') exists and f(T) =

f(T) [Dixmier, Proposition 1.5.3, p.11]. We have

wa(F(T)) = o(F(T)) = o(£(T)) = F(o(T)) = f(wa(T)).

- 109 -



HEE

Theorem 2.3. If T is any operator, then wo(T + K) = wa(T) holds if
and only if K is in J,.

Proof. If K € 3, then it follows right from the definition that w, (T+K) =
we(T).
Conversely suppose that wo(T + K) = wo(T). If T =0, we get wqa(K) =

{0}. Thus wa(K*) = we(K) = {0} and hence

wa (K + K*) = wa(K*) = {0}
and

wa(K — K*) = wa(K*) = {0}.

However K + K* and K — K* are both normal operators, and so are in J,.
Hence K = [(K + K*) + (K — K*)]/2 € Jq4. O

Theorem 2.4. If o(T + K) = 04(T) for some K € 3,, then wo(T) =
oa(T).

Proof. By hypothesis wo(T) = Neeg 0(T + C) C o(T + K) = 04(T) for
some K € J,. Hence wqo(T) = 04(T)- O

Theorem 2.5. w, (‘3 g) C we(A) Uwy(B).

Proof. Let A € wo(A)Uwa(B). Then A € wa(A) and A € w,(B) and hence

A-AI=8+K, and B-AIl=5+K;

where S; and S, are invertible and K; and K5 are in J,. Consider

A O _y _(Si+Kr 0 \_ (S 0\, (K 0
0 B o 0 Sy + Ko - 0 S, 0 Ko
0

S1 0 \.. . K A 0
where ( 0 Sz) is invertible and ( 0 Kz) € Jo. Therefore A € wq ( 0 B)
and thus

e (‘(‘)‘ g) C wa(A) Uwa(B) .

O

K. K Oberai [5] has proved that if T, — T, limo(T,) = o(T) then
limw(T,) = w(T). We however prove the following :
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Theorem 2.6. Let T,, - T. Iflimoo(T,) = 0o(T) then
wa(T) C liminf w, (T7,)

that is T — wu(T) is lower semi-continuous at T'.

Proof. Suppose A € liminfw,(T,). This means that there exists a neigh-
borhood V of A that does not intersect infinitely many wo(T,). Since
0a(Tn) C wa(Ty) for each n, V does not intersect infinitely many o4(T,).
Hence A € limo,(T,) = 0o(T) C we(T). Therefore A & wo(T). Thus
wo(T) C liminf w,(T,). Hence T' — wo(T) is lower semi-continuous O

Theorem 2.7. Let T € B(H) be similar to an operator S. If a— Weyl’s
theorem holds for T, then a— Weyl’s theorem holds for S.

Proof. Let S be similar to T. Then there exists an invertible operator P
such that P~!TP = S. Note [2] that T is of the form invertible +o—compact
if and only if P~!TP = S is of that form. Thus

(1) wa(S) = wa(P™ITP) = wo(T).
By [4, Problem 75]
(2)  o(S)=0(P7'TP)=0(T) and 0p(S)=0,(P~'TP) = 0,(T).

It suffice to show that ker(T' — A) = P(ker(S — A)) and so dimker(T — A) =
dim P(ker(S — A)). If z € ker(T — A), then

S(P~'z) = (P7'TP)(P'z) = P7T(PP 1)
=P Tz = P '(\z) = AP !z.

Thus P~ !z € ker(S — A) and so z € P(ker(S — X)).

Conversely if z € P(ker(S — A)), then £ = Py for some y € ker(S — )
and so z = Py and P"!TPy = \y. Hence TPy = P(\y) = APy, ie.,
Tz = Az, and so = € ker(T — X). Therefore ker(T — A) = P(ker(S — ))) and
so dimker(T — A) = dim P(ker(S — X)) = dimker(S — X) since P is invertible.

From this it is obvious that 7oa(T) = mea(PITP) = mpa(S), where
Toa(T') denotes the isolated points of o(T') that are eigenvalues of multiplicity
less than a. Since a—Weyl’s theorem holds for T', wo(T') = o(T') — moa(T).
From (1) and (2), wa(S) = wa(P~TP) = wa(T) = o(T) — 70a(T) = 0(S) —
Toa(S). Hence aa—Weyl’s theorem holds for S. O
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Corollary 2.8. Let T € B(H) be unitarily equivalent to an operator S.
If a— Weyl’s theorem holds for T, then o.— Weyl’s theorem holds for S.

We say that T in B(H) is a— Weyl if T is of the form S + K, where S is
invertible and K € J,. In this case, if a = ¥y, T is said to be Weyl.

Theorem 2.9. If T in B(H) is a— Weyl and if S in B(H) ts such that
7(S) = w(T)7!, then S is a— Weyl.

Proof. Since T is a—Weyl, T = U + K, where U is invertible and K € J,,
and this clearly implies that S is of the form invertible + a—compact, i.e.,
S is a—Weyl. O

Theorem 2.10. If n(T) is seminormal in B(H)/J, and if wa(T) C {A:
|A| = 1}, then T is of form unitary + a— compact.

Proof. By hypothesis, 0 is not in ws(T) and so T = S + K, where S
is invertible and K is a—compact. Hence n(T) = n(S). Since o(T) =
0a(T) C wo(T) C {A: |\ =1} and #«(T) is seminormal, w(T) is unitary in
B(H)/J4 and so 7(S*S) = n(I). But square roots of a positive element of a
C*—algebra are unique, so 7((5*S)/2) = n(I). Let the polar decomposition
of S be given by S = U(5*S)Y/2, where U is unitary. Then

n(T) = n(S) = n(U(5*S)"/?) = n(U)x((5*8)*?)
= n(U)n(I) = n(U),

so that T — U is a—compact. O

For an example, consider 7' = U @ U*, where U is the unilateral shift. In
this case, w(T) = {A : |A| = 1} = 0.(T). But T is not a normal operator.
Since I — UU* and UU* — I are rank one operators, nm(T) is normal. By
Theorem 2.10, T'= U & U* is of the form unitary + compact.

A bounded linear operator T in B(H) is said to belong to class W ([8]) if

0e(T) = w(T) ,

where 0.(T) denote the essential spectrum of T. For example, define an
operator T on Iy by

1 1
T(z1,22, ) = (5-'52, §$3, o).
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Then o(T) = {0,1,3,---}, and w(T) = 0.(T) = {0} since T is compact.
Hence T is of class W. However, consider the weighted shift U on I, given
by

U(.’El, T2, ) = (0,$1,$2,.’E3, e )
Then U is hyponormal, w(U) = o(U) = D(= the closed unit disc) and
oe(U) = C(= the unit circle). Hence U is not of class W and so we note
that T is not of class W, even if T is hyponormal.

Motivated by this we say that a bounded linear operator T in B(H)

belongs to class W, if
0a(T) = wa(T) .

If T is a normal operator then o4(T) = wq(T) [3].

Theorem 2.11. Let T be an invertible operator in class W, then T} is
also in class W,,.

Proof. Let 0 # A € wo(T) = Nkes o(T + K). Then for some K €
Jay A € o(T + K). Therefore T + K — Al is invertible modulo J,. This
means T + J, — Al is invertible in B(H)/J,. Hence A € o(T + J,). This
gives that

% gol(T+7To) N=0(T1+3a)

Y
wo(T). Hence wa(T™1) C - 1 Replacing T by T~ we get wu(T)

w—aﬁ_—f—). Therefore wo (T~1) =

and 50 + & Nkey, 0(T™! + K). Thus + & wa(T™"). Therefore ﬁ

oL o1
“walT™) = 0y = gy~ =)

Hence 7! is also in class W,,. O
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