ON THE WEYL'S SPECTRUM OF WEIGHT II

YOUNGOH YANG

ABSTRACT. We study the properties of α -Fredholm operators and the Weyl's spectrum of weight α , $\omega_{\alpha}(T)$, of an operator. We show that similarity preserves α -Weyl's theorem and give a condition for an operator to be of the form unitary+ α -compact. We also introduce the class W_{α} for any cardinal α and study its properties.

0. Introduction

Throughout the paper, H denotes a fixed (complex) Hilbert space of dimension $h > \aleph_0$, the cardinality of the set of natural numbers and we write B(H) for the set of all bounded linear operators on H. For each cardinal α with $\aleph_0 \leq \alpha \leq h$, let I_{α} denote the two-sided ideal in B(H) of all bounded operators of rank less than α and let \mathfrak{I}_{α} denote the uniform closure of I_{α} . Then the \mathfrak{I}_{α} are precisely the proper closed two-sided ideals of B(H). Of course, \mathfrak{I}_{\aleph_0} is the ideal of compact operators and \mathfrak{I}_h is the maximal closed two-sided ideal of B(H). If $\aleph_0 \leq \alpha < \beta \leq h$, then $\Im_{\alpha} \subseteq \Im_{\beta}$ and $\mathfrak{I}_{\alpha} \neq \mathfrak{I}_{\beta}$. For each operator T, \hat{T} denotes the coset $T + \mathfrak{I}_{\alpha}$ in the C^* -algebra $B(H)/\mathfrak{I}_{\alpha}$. The ordinary spectrum of the canonical image \hat{T} of T in the quotient C^* -algebra $B(H)/\Im_{\alpha}$ is called the spectrum of T of weight α and denoted by $\sigma_{\alpha}(T)$. That is, $\sigma_{\alpha}(T)$ is the collection of all complex numbers λ such that $T - \lambda I$ is not invertible modulo \mathfrak{I}_{α} . Hence $\sigma_{\alpha}(T)$ is nonempty and compact [3]. $\pi_{\alpha}(T)$ is used to denote the approximate point spectrum of \hat{T} . If T is α -compact, i.e., $T \in \mathfrak{I}_{\alpha}$, then $\sigma_{\alpha}(T) = \sigma(\hat{T}) = \{0\}$. Since \mathfrak{I}_{α} are self-adjoint ideals, Re $\sigma_{\alpha}(T) = \{0\} = \sigma_{\alpha}(\operatorname{Re} T)$.

Key words and phrases. Weyl's spectrum, similarity, α -Weyl's theorem, class W_{α} , 1991 Mathematics Subject Classification. 47A10, 47A53, 47B20,.

In [7], Yadav and Arora defined the Weyl's spectrum of weight α , $\omega_{\alpha}(T)$, of an operator T on H by

$$\omega_{\alpha}(T) = \bigcap_{K \in \mathfrak{I}_{\alpha}} \sigma(T+K).$$

We say [7] that α -Weyl's theorem holds for T if

$$\sigma(T) - \omega_{\alpha}(T) = \pi_{0\alpha}(T)$$

where $\pi_{0\alpha}(T)$ denotes the set of all isolated eigenvalues of multiplicity less than α . For each operator T, $\omega_{\alpha}(T)$ is a nonempty compact subset of $\sigma(T)$ [See Theorem 2.1], and if T is normal then $\sigma_{\alpha}(T) = \omega_{\alpha}(T) = \pi_{\alpha}(T)$ [3, Corollary 4.7.1]. $0 \notin \omega_{\alpha}(T)$ if and only if T is of the form S + K, where S is invertible and $K \in \mathfrak{I}_{\alpha}$. Again it follows from the selfadjointness of the ideal \mathfrak{I}_{α} that $\overline{\omega_{\alpha}(T)} = \omega_{\alpha}(T^*)$ for any operator T.

In [8], Yang introduced the class W of operators as follows: A bounded linear operator T in B(H) is said to belong to class W if

$$\sigma_e(T) = \omega(T) \;\;,$$

where $\sigma_e(T)$ denote the essential spectrum of T. Motivated by this we say that a bounded linear operator T in B(H) belongs to class W_{α} if

$$\sigma_{\alpha}(T) = \omega_{\alpha}(T)$$

If T is a normal operator then $\sigma_{\alpha}(T) = \omega_{\alpha}(T)$ [3].

In this paper, we study the properties of α -Fredholm operators and the Weyl's spectrum of weight α , $\omega_{\alpha}(T)$, of an operator. We show that similarity preserves α -Weyl's theorem and give a condition for an operator to be of the form unitary+ α -compact. We also introduce the class W_{α} for any cardinal α and study its properties.

1. α -Fredholm Operators

We recall ([3]) that a subspace K of a Hilbert space H is called α -closed if there is a closed subspace L of H such that $L \subset K$ and $\dim(K \cap L^{\perp}) < \alpha$ and an operator T on H is an α -Fredholm operator if $v(T) < \alpha, \rho'(T) < \alpha$ and range of T is α -closed, where v(T) is nullity of T and $\rho'(T)$ is corank of T. **Theorem 1.1.** Let T and S be commuting operators in B(H). Then TS is an α -Fredholm operator if and only if T and S both are α -Fredholm operators.

Proof. Let T and S be α -Fredholm operators. Since an α -Fredholm operator is invertible modulo \Im_{α} [3], there exists an operator T_1 such that

$$F_1 = I - TT_1 \in \mathfrak{I}_{\alpha}, \text{ and } F_2 = I - T_1T \in \mathfrak{I}_{\alpha}.$$

Also there exists an operator S_1 such that

$$F_3 = I - SS_1 \in \mathfrak{I}_{\alpha}, \text{ and } F_4 = I - S_1S \in \mathfrak{I}_{\alpha}.$$

Then

$$T_1S_1ST = T_1(I - F_4)T = T_1T - T_1F_4T$$

= $I - F_2 - T_1F_4T = I - F_5$
 $STT_1S_1 = S(I - F_1)S_1$
= $I - F_3 - SF_1S_1T = I - F_6$,

where F_5 and F_6 are in \Im_{α} . Hence by [3] ST is an α -Fredholm operator.

Conversely, let ST be α -Fredholm operator. Since ST = TS,

$$N(S) \cup N(T) \subseteq N(ST)$$
, and $N(S^*) \cup N(T^*) \subseteq N(ST)^*$.

Thus dim $N(S) \leq \dim N(ST) < \alpha$ and similarly

dim $N(T) < \alpha$, dim $N(S^*) < \alpha$, and dim $N(T^*) < \alpha$.

Since TS is α -Fredholm operator, by [3] TS is bounded below on some closed subspace K of codimension less than α . This means that

$$||TSx|| \ge \varepsilon ||x||, \ x \in K$$

where dim $K^{\perp} < \alpha$. Since $||TSx|| \leq ||T|| ||Sx||$, for each x in K

$$||Sx|| \ge \varepsilon ||T||^{-1} ||x||$$
.

Hence S is bounded below on a closed subspace K of codimension less than α . Therefore by [3] R(S) is α -closed. Similarly we can prove that R(T) is α -closed. Hence T and S are α -Fredholm operators.

Theorem 1.2. Assume that S and T in B(H) are such that TS is an α -Fredholm operator. Then S is α -Fredholm operator if and only if T is α -Fredholm.

Proof. First, we assume that S is α -Fredholm. Then by [3] there exists an operator S_1 such that

$$I - S_1 S = F_1, \quad \text{and} \quad I - S S_1 = F_2$$

where $F_1, F_2 \in \mathfrak{I}_{\alpha}$. Now $SS_1 = I - F_2$. Therefore $TSS_1 = T - TF_2$.

Now S_1 is α -Fredholm operator as S_1 is invertible modulo \mathfrak{I}_{α} . TS is α -Fredholm operator by hypothesis. By necessary part of Theorem 1.1, TSS_1 is α -Fredholm operator. Since TF_2 is in \mathfrak{I}_{α} , T is α -Fredholm operator. By the same argument, if we assume that T is an α -Fredholm operator, then S is α -Fredholm.

Theorem 1.3. Let S be an α -Fredholm operator. Then there is an $\varepsilon > 0$ such that for any T in B(H) satisfying $||T|| < \varepsilon$, S + T is also α -Fredholm.

Proof. By [3], there exists an operator S_1 such that

$$I - SS_1 = F_1, \quad \text{and} \quad I - S_1S = F_2$$

where F_1 , F_2 are \mathfrak{I}_{α} . We note that $S_1 \neq 0$. Also

$$S_1(S+T) = S_1S + S_1T = I - F_2 + S_1T,$$

(S+T)S₁ = SS₁ + TS₁ = I - F₁ + TS₁.

Take $\varepsilon = ||S_1||^{-1}$. Then for T satisfying $||T|| < \varepsilon$,

$$||S_1T|| \le ||S_1|| ||T|| < 1.$$

Similarly $||TS_1|| < 1$. Thus the operator $I + TS_1$ and $I + S_1T$ have bounded inverses. Consequently

$$(I + S_1T)^{-1} S_1(S + T) = I - (I + S_1T)^{-1} F_2,$$

$$(S + T)S_1(I + TS_1)^{-1} = I - F_1(I + TS_1)^{-1}.$$

Therefore by [3] S + T is α -Fredholm.

- 108 -

2. α -Weyl's spectrum

Theorem 2.1. ([7]) For any operator T, $\omega_{\alpha}(T)$ is a nonempty compact subset of $\sigma(T)$.

Proof. That $\omega_{\alpha}(T)$ is a compact subset of $\sigma(T)$ follows from the definition. We claim that $\sigma_{\alpha}(T) \subseteq \omega_{\alpha}(T)$. Let $\lambda \in \sigma_{\alpha}(T)$. Then $\hat{T} - \lambda \hat{I}$ is not invertible in $B(H)/\mathfrak{I}_{\alpha}$. Let $\lambda \notin \omega_{\alpha}(T)$. Then $T - \lambda I = S + K$, where S is invertible and $K \in \mathfrak{I}_{\alpha}$. Hence $\hat{T} - \lambda \hat{I} = \hat{S}$, where \hat{S} is invertible in $B(H)/\mathfrak{I}_{\alpha}$, a contradiction. Hence $\lambda \in \omega_{\alpha}(T)$. Thus $\omega_{\alpha}(T)$ is a nonempty compact subset of $\sigma(T)$.

Lemma 2.2. ([7]) For an arbitrary operator T and a polynomial p,

$$\omega_{\alpha}(p(T)) \subseteq p(\omega_{\alpha}(T)).$$

However, if T is normal then for any continuous function f on $\sigma(T)$,

$$\omega_{\alpha}(f(T)) = f(\omega_{\alpha}(T)).$$

Proof. Suppose $\mu \notin p(\omega_{\alpha}(T))$. Write

$$p(\lambda) - \mu = a(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

For each j, $p(\lambda_j) = \mu \notin p(\omega_{\alpha}(T))$. Then $\lambda_j \notin \omega_{\alpha}(T)$ and therefore $T - \lambda_j = S_j + F_j$ for each j, where S_j is invertible and $F_j \in \mathfrak{I}_{\alpha}$. Hence

$$p(T) - \mu I = a(S_1 + F_1)(S_2 + F_2) \cdots (S_n + F_n)$$

= S + F, say

where S is invertible and $F \in \mathfrak{I}_{\alpha}$. Hence $\mu \notin \omega_{\alpha}(p(T))$ and so $\omega_{\alpha}(p(T)) \subseteq p(\omega_{\alpha}(T))$.

Now if T is normal, then $\omega_{\alpha}(T) = \sigma_{\alpha}(T)([3])$, Corollary 4.7). Also \hat{T} is normal in $B(H)/\Im_{\alpha}$. Hence by C^* -algebra theory, $f(\hat{T})$ exists and $f(\hat{T}) = \widehat{f(T)}$ [Dixmier, Proposition 1.5.3, p.11]. We have

$$\omega_{\alpha}(f(T)) = \sigma(\widehat{f(T)}) = \sigma(f(\widehat{T})) = f(\sigma(\widehat{T})) = f(\omega_{\alpha}(T)).$$

Proof. If $K \in \mathfrak{I}_{\alpha}$, then it follows right from the definition that $\omega_{\alpha}(T+K) = \omega_{\alpha}(T)$.

Conversely suppose that $\omega_{\alpha}(T+K) = \omega_{\alpha}(T)$. If T = 0, we get $\omega_{\alpha}(K) = \{0\}$. Thus $\omega_{\alpha}(K^*) = \overline{\omega_{\alpha}(K)} = \{0\}$ and hence

$$\omega_{\alpha}(K+K^*) = \omega_{\alpha}(K^*) = \{0\}$$

and

and only if K is in \mathfrak{I}_{α} .

$$\omega_{lpha}(K-K^*)=\omega_{lpha}(K^*)=\{0\}.$$

However $K + K^*$ and $K - K^*$ are both normal operators, and so are in \mathfrak{I}_{α} . Hence $K = [(K + K^*) + (K - K^*)]/2 \in \mathfrak{I}_{\alpha}$.

Theorem 2.4. If $\sigma(T + K) = \sigma_{\alpha}(T)$ for some $K \in \mathfrak{I}_{\alpha}$, then $\omega_{\alpha}(T) = \sigma_{\alpha}(T)$.

Proof. By hypothesis $\omega_{\alpha}(T) = \bigcap_{C \in \mathfrak{I}_{\alpha}} \sigma(T+C) \subseteq \sigma(T+K) = \sigma_{\alpha}(T)$ for some $K \in \mathfrak{I}_{\alpha}$. Hence $\omega_{\alpha}(T) = \sigma_{\alpha}(T)$.

Theorem 2.5. $\omega_{\alpha} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \subseteq \omega_{\alpha}(A) \cup \omega_{\alpha}(B).$

Proof. Let $\lambda \notin \omega_{\alpha}(A) \cup \omega_{\alpha}(B)$. Then $\lambda \notin \omega_{\alpha}(A)$ and $\lambda \notin \omega_{\alpha}(B)$ and hence

 $A - \lambda I = S_1 + K_1$ and $B - \lambda I = S_2 + K_2$

where S_1 and S_2 are invertible and K_1 and K_2 are in \mathfrak{I}_{α} . Consider

where $\begin{pmatrix} S_1 & 0\\ 0 & S_2 \end{pmatrix}$ is invertible and $\begin{pmatrix} K_1 & 0\\ 0 & K_2 \end{pmatrix} \in \mathfrak{I}_{\alpha}$. Therefore $\lambda \notin \omega_{\alpha} \begin{pmatrix} A & 0\\ 0 & B \end{pmatrix}$ and thus

$$\omega_{\alpha} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \subset \omega_{\alpha}(A) \cup \omega_{\alpha}(B) \quad .$$

K. K Oberai [5] has proved that if $T_n \to T$, $\lim \sigma(\hat{T}_n) = \sigma(\hat{T})$ then $\lim \omega(T_n) = \omega(T)$. We however prove the following :

- 110 -

Theorem 2.6. Let $T_n \to T$. If $\lim \sigma_{\alpha}(T_n) = \sigma_{\alpha}(T)$ then

 $\omega_{\alpha}(T) \subset \liminf \omega_{\alpha}(T_n) ,$

that is $T \to \omega_{\alpha}(T)$ is lower semi-continuous at T.

Proof. Suppose $\lambda \notin \liminf \omega_{\alpha}(T_n)$. This means that there exists a neighborhood V of λ that does not intersect infinitely many $\omega_{\alpha}(T_n)$. Since $\sigma_{\alpha}(T_n) \subset \omega_{\alpha}(T_n)$ for each n, V does not intersect infinitely many $\sigma_{\alpha}(T_n)$. Hence $\lambda \notin \lim \sigma_{\alpha}(T_n) = \sigma_{\alpha}(T) \subset \omega_{\alpha}(T)$. Therefore $\lambda \notin \omega_{\alpha}(T)$. Thus $\omega_{\alpha}(T) \subset \liminf \omega_{\alpha}(T_n)$. Hence $T \to \omega_{\alpha}(T)$ is lower semi-continuous

Theorem 2.7. Let $T \in B(H)$ be similar to an operator S. If α -Weyl's theorem holds for T, then α -Weyl's theorem holds for S.

Proof. Let S be similar to T. Then there exists an invertible operator P such that $P^{-1}TP = S$. Note [2] that T is of the form invertible $+\alpha$ -compact if and only if $P^{-1}TP = S$ is of that form. Thus

(1)
$$\omega_{\alpha}(S) = \omega_{\alpha}(P^{-1}TP) = \omega_{\alpha}(T).$$

By [4, Problem 75]

(2)
$$\sigma(S) = \sigma(P^{-1}TP) = \sigma(T)$$
 and $\sigma_p(S) = \sigma_p(P^{-1}TP) = \sigma_p(T)$.

It suffice to show that $\ker(T - \lambda) = P(\ker(S - \lambda))$ and so $\dim \ker(T - \lambda) = \dim P(\ker(S - \lambda))$. If $x \in \ker(T - \lambda)$, then

$$S(P^{-1}x) = (P^{-1}TP)(P^{-1}x) = P^{-1}T(PP^{-1}x)$$

= $P^{-1}Tx = P^{-1}(\lambda x) = \lambda P^{-1}x.$

Thus $P^{-1}x \in \ker(S - \lambda)$ and so $x \in P(\ker(S - \lambda))$.

Conversely if $x \in P(\ker(S - \lambda))$, then x = Py for some $y \in \ker(S - \lambda)$ and so x = Py and $P^{-1}TPy = \lambda y$. Hence $TPy = P(\lambda y) = \lambda Py$, i.e., $Tx = \lambda x$, and so $x \in \ker(T - \lambda)$. Therefore $\ker(T - \lambda) = P(\ker(S - \lambda))$ and so dim $\ker(T - \lambda) = \dim P(\ker(S - \lambda)) = \dim \ker(S - \lambda)$ since P is invertible.

From this it is obvious that $\pi_{0\alpha}(T) = \pi_{0\alpha}(P^{-1}TP) = \pi_{0\alpha}(S)$, where $\pi_{0\alpha}(T)$ denotes the isolated points of $\sigma(T)$ that are eigenvalues of multiplicity less than α . Since α -Weyl's theorem holds for T, $\omega_{\alpha}(T) = \sigma(T) - \pi_{0\alpha}(T)$. From (1) and (2), $\omega_{\alpha}(S) = \omega_{\alpha}(P^{-1}TP) = \omega_{\alpha}(T) = \sigma(T) - \pi_{0\alpha}(T) = \sigma(S) - \pi_{0\alpha}(S)$. Hence α -Weyl's theorem holds for S. **Corollary 2.8.** Let $T \in B(H)$ be unitarily equivalent to an operator S. If α -Weyl's theorem holds for T, then α -Weyl's theorem holds for S.

We say that T in B(H) is α -Weyl if T is of the form S + K, where S is invertible and $K \in \mathfrak{I}_{\alpha}$. In this case, if $\alpha = \aleph_0$, T is said to be Weyl.

Theorem 2.9. If T in B(H) is α -Weyl and if S in B(H) is such that $\pi(S) = \pi(T)^{-1}$, then S is α -Weyl.

Proof. Since T is α -Weyl, T = U + K, where U is invertible and $K \in \mathfrak{I}_{\alpha}$, and this clearly implies that S is of the form invertible + α -compact, i.e., S is α -Weyl.

Theorem 2.10. If $\pi(T)$ is seminormal in $B(H)/\mathfrak{I}_{\alpha}$ and if $\omega_{\alpha}(T) \subseteq \{\lambda : |\lambda| = 1\}$, then T is of form unitary $+ \alpha$ -compact.

Proof. By hypothesis, 0 is not in $\omega_{\alpha}(T)$ and so T = S + K, where S is invertible and K is α -compact. Hence $\pi(T) = \pi(S)$. Since $\sigma(\hat{T}) = \sigma_{\alpha}(T) \subseteq \omega_{\alpha}(T) \subseteq \{\lambda : |\lambda| = 1\}$ and $\pi(T)$ is seminormal, $\pi(T)$ is unitary in $B(H)/\Im_{\alpha}$ and so $\pi(S^*S) = \pi(I)$. But square roots of a positive element of a C^* -algebra are unique, so $\pi((S^*S)^{1/2}) = \pi(I)$. Let the polar decomposition of S be given by $S = U(S^*S)^{1/2}$, where U is unitary. Then

$$\pi(T) = \pi(S) = \pi(U(S^*S)^{1/2}) = \pi(U)\pi((S^*S)^{1/2})$$

= $\pi(U)\pi(I) = \pi(U),$

so that T - U is α -compact.

For an example, consider $T = U \oplus U^*$, where U is the unilateral shift. In this case, $\omega(T) = \{\lambda : |\lambda| = 1\} = \sigma_e(T)$. But T is not a normal operator. Since $I - UU^*$ and $UU^* - I$ are rank one operators, $\pi(T)$ is normal. By Theorem 2.10, $T = U \oplus U^*$ is of the form unitary + compact.

A bounded linear operator T in B(H) is said to belong to class W ([8]) if

$$\sigma_e(T) = \omega(T) \;\;,$$

where $\sigma_e(T)$ denote the essential spectrum of T. For example, define an operator T on l_2 by

$$T(x_1, x_2, \cdots) = (\frac{1}{2}x_2, \frac{1}{3}x_3, \cdots).$$

- 112 -

Then $\sigma(T) = \{0, \frac{1}{2}, \frac{1}{3}, \dots\}$, and $\omega(T) = \sigma_e(T) = \{0\}$ since T is compact. Hence T is of class W. However, consider the weighted shift U on l_2 given by

$$U(x_1, x_2, \cdots) = (0, x_1, x_2, x_3, \cdots).$$

Then U is hyponormal, $\omega(U) = \sigma(U) = D(=$ the closed unit disc) and $\sigma_e(U) = C(=$ the unit circle). Hence U is not of class W and so we note that T is not of class W, even if T is hyponormal.

Motivated by this we say that a bounded linear operator T in B(H) belongs to class W_{α} if

$$\sigma_{\alpha}(T) = \omega_{\alpha}(T) \quad .$$

If T is a normal operator then $\sigma_{\alpha}(T) = \omega_{\alpha}(T)$ [3].

Theorem 2.11. Let T be an invertible operator in class W_{α} then T^{-1} is also in class W_{α} .

Proof. Let $0 \neq \lambda \notin \omega_{\alpha}(T) = \bigcap_{K \in \mathfrak{I}_{\alpha}} \sigma(T+K)$. Then for some $K \in \mathfrak{I}_{\alpha}, \lambda \notin \sigma(T+K)$. Therefore $T+K-\lambda I$ is invertible modulo \mathfrak{I}_{α} . This means $T+\mathfrak{I}_{\alpha}-\lambda I$ is invertible in $B(H)/\mathfrak{I}_{\alpha}$. Hence $\lambda \notin \sigma(T+\mathfrak{I}_{\alpha})$. This gives that

$$\frac{1}{\lambda} \notin \sigma[(T + \mathfrak{I}_{\alpha})^{-1}] = \sigma(T^{-1} + \mathfrak{I}_{\alpha})$$

and so $\frac{1}{\lambda} \notin \bigcap_{K \in \mathfrak{I}_{\alpha}} \sigma(T^{-1} + K)$. Thus $\frac{1}{\lambda} \notin \omega_{\alpha}(T^{-1})$. Therefore $\frac{1}{\omega_{\alpha}(T^{-1})} \subseteq \omega_{\alpha}(T)$. Hence $\omega_{\alpha}(T^{-1}) \subseteq \frac{1}{\omega_{\alpha}(T)}$. Replacing T by T^{-1} we get $\omega_{\alpha}(T) \subseteq \frac{1}{\omega_{\alpha}(T^{-1})}$. Therefore $\omega_{\alpha}(T^{-1}) = \frac{1}{\omega_{\alpha}(T)}$. Now

$$\omega_{\alpha}(T^{-1}) = \frac{1}{\omega_{\alpha}(T)} = \frac{1}{\sigma_{\alpha}(T)} = \sigma_{\alpha}(T).$$

Hence T^{-1} is also in class W_{α} .

REFERENCES

1. S. K. Berberian, An extension of Weyl's spectrum to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.

_		_	
r	-	٦	

- 2. S. K. Berberian, The Weyl's spectrum of an operator, Indiana Univ. Math. J. 20(6) (1970), 529-544.
- 3. G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21(1) (1971), 61-80.
- 4. P. R. Halmos, *Hilbert space problem book*, Springer-Verlag, New York, 1984.
- 5. K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
- 6. M. Schechter, Academic Press, New York, London (1971).
- 7. B. S. Yadav and S. C. Arora, A generalization of Weyl spectrum, Glasnik Math. 15(35) (1980), 315-319.
- 8. Youngoh Yang, On Weyl spectrum and a class of operators, Nihonkai Math. J. 9 (1998), 63-70.

Youngoh Yang

Department of Mathematics and Research Institute for Basic Sciences Cheju National University

Cheju, 690-756, KOREA

Email:yangyo@cheju.cheju.ac.kr