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ON THE LIMIT OF SOLUTIONS FOR
SDI ON FINITE DIMENSIONAL SPACE

Yong Sik YUN

Department of Information and Mathematics, Cheju National University, Korea

ABSTRACT. For the stochastic differential inclusion of the form dX: € o(t, X¢)dB: +
b(t, Xi)dt, where o,b are set-valued maps, B is a standard Brownian motion, we
study the limit of solutions.

1. INTRODUCTION

Let (2,3, P) be a complete probability space with a right-continuous increasing
family (F¢)e>o of sub o—fields of § each containing all P-null sets. Let B = (B¢)t>0
be an r-dimensional (§;)-Brownian motion. We consider the following stochastic
differential inclusion.

(ll) dX. € O'(t, Xt)ng + b(t, Xg)dt,

where o : [0,T] x RY > P(RI®R"), b: [0,T] x R? - P(R?) are set-valued
maps. In recent years the study of the existence and properties of solution for
these stochastic differential inclusions have been developed by many authors ([4]).
Furthermore the results for the viable solutions have been made ([2], [6]). For the
stochastic differential equation associated with (1.1), many results for the existence,
uniqueness and properties of solutions have been done under various conditions that
o and b are continuous and bounded or Lipschitzean or Holder continuous ([3]). We
proved the existence of solution for stochastic differential inclusion (1.1) under the
condition that o and b satisfy the local Lipschitz property and linear growth ({7]).
Furthermore we proved any solution for stochastic differential inclusion (1.1) is
bounded ([9]).

In this paper, we study the limit of solutions for stochastic differential inclusion

(1.1).
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2. PRELIMINARIES

We prepare the definition of solution for stochastic differential inclusion and
some results for the stochastic differential equation and selection theorems.

Definition 2.1. An r-dimensional continuous process B = (Bt)te[0,00) is called an
r-dimensional (§,)-Brownian motion if it is (§,)-adapted and satisfies

Elexpli < £, B, — B, >| | §s] =exp[—(t - 8)|€12/2), a.s.
for every £€R" and 0< s < t.

Let us consider the stochastic differential inclusion

(1.1) dX, € o(t, X;)dB; + b(t, X,)dt
with the initial value X¢ = z¢, where o : [0, T]xRY -5 R4QR", b: [0,T]xR¢ — R
are set-valued maps and z is a R%-valued F,-measurable function.

Definition 2.2. A predictable continuous stochastic process X = {X:, telo0,T)}
is said to be a solution of (1.1) on [0, T] with the initial condition zq if there are
predictable random processes f : Q x [0,7] - RE®R", g: Q x (0,7) — R? such
that f(¢) € o(t, X,), g(t) € b(t, X;) a.5. on [0,T) and for every t € [0, 7,

Xe=z0+ -/: f(s)dB, + /:g(s) ds as.

For the stochastic differential equation

t t
(2.1) X = £+‘/0 o(s, X,)dB, +/0 b(s, X,)ds,

where o : [0,T] x R 5 R®R", b:[0,T] x R — R? are B([0,T])) @ B(RY) @ Fr-
measurable and §;-progressively measurable for each z € RY, € is So-measurable,
the following theorems are well known.

Theorem 2.3. ([5]) We assume the followings.
(i) For each N > 0, there exists a constant Cy > 0 such that

{ Ila(t,z) - U(t’y)” < CN * |$L‘ - ylv I, ye€ BN
|b(ti x) - b(t1 y)l S CN : |$ - yla T,y € BN’

where By = {z € R%, |z| < N} and ||o||? = 7_, T8 |o}[2 = tr(00*).
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On The Limit of Solutions for SDI on Finite Dimensional Space

(ii) There exists a constant K > 0 such that

Lo 2 + 5 - blt,7) < K(r(t)? + 1),

where r(t) is a progressively measurable such that

E [ €2 + /0 T{|b(s, 0)2 + r(s)z}ds]< .

Then (2.1) has unique solution X; and

t
E(|X.’|<E [|§|2 +2K / r(s)zds] 2Kt Wt <T.
0

For a Banach space X with the norm || - || and for non-empty sets A, A’ in X,
we denote ||A|| = sup{|la]| | a € A}, d(a, A') = inf{d(a,a’) | a € A'}, d(AA) =
sup{d(a, A’) | a € A} and du (4, A') = max{d(4, A"), d(A’, A)}, a Hausdorff metric.
Given a family of sets {F, | @ € A}, a selection is a map o = fo in F,. The most
famous continuous selection theorem is the following result by Michael.

Theorem 2.4. ([1]) Let X be a metric space, Y a Banach space. Let F from X
into the closed convex subsets of Y be lower semi-continuous. Then there exists
f: X =Y, a continuous selection from F.

Proof. Step 1. Let us given by proving the following claim : given any convex (not
necessarily closed) valued lower semi-continuous map ® and every ¢ > 0, there
exists a continuous ¢ : X — Y such that for £ in X,d(¢(£), ®(£)) < €.

In fact, for every z € X, let y, € ®(z) and let ; > 0 be such that (y. +€A4) N
&(z') # 0 for =’ in B(z,d;), where A denotes the open unit ball. Since X is metric,
it is paracompact. Hence there exists a locally finite refinement {{.}; € X of
{B(z,6:)}z- Let {rz(-)}. be a partition of unity subordinate to it. The mapping
¢ : X = Y given by p(€) =Y 7-(§)y: is continuous since it is locally a finite sum
of continuous functions. Fix £. Whenever 7.(§) > 0, £ € Uz C B(z,d;), hence
y: € ®(&) + eA. Since this latter set is convex, any convex combination of such y’s
(in particular, ¢(£)) belongs to it.

Step 2. Next we claim that we can define a sequence {fn} of continuous mappings
from X into Y with the following properties

i) for each £ € X,d(fu(€), F()) < 3y n=1,2,---,

i) for each £ € X, |[fa(€) = fao1 ()| < gow, m =2,

For n = 1 it is enough to take in the claim of part Step 1, & = F and € = 1/2.
Assume we have defined mappings f, satisfying i) up to n = v. We shall define f,+1
satisfying i) and ii) as follows. Consider the set ®(£) = ( &+ 2%;1) NF(¢). Byi)
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it is not empty, and it is a convex set. The map £ — ®(£) is lower semicontinuous
and by the claim of Step 1, there exists a continuous ¢ such that d(p(z), ®(x)) <
g Set fo41(€) = @(£). A fortiori d(fo41(€), F(£)) < 5&r, proving i). Also
forr(§) € ¥(€) + P AC £(O) + (£ + Fhr)A e,

1
v-1

”fv+l(€) - fu(E)” <
proving ii).
Step 3. Since the series }_ 2%, converges, { fn(-)} is a Cauchy sequence, uniformly

converging to a continuous f(-). Since the values of F are closed, by i) of part Step
2, f is a selection from F. O

Let A C R" be a compact convex body, i.e., a compact set with nonempty inte-
rior, and let m,, be the n-dimensional Lebesgue measure. Since m, (A) is positive,
we can define the barycenter of A as

1
b(A) = m/AI dm,,.

Lemma 2.5. ([1]) The barycenter of A, b(A), belongs to A.

Proof. Assume the contrary: d(b(A), A) is positive. Set a to be 7 4(b(A)), b to be
b(A) and p=b —a.

By the characterization of the best approximation we have that for all z in A,
<z-—a,p><0. However from

1

we have
I =< s [ (@ = @)dmn,p >
mn(A4) J4
@,
= <z-a,p>dm, <0,
mn(A) J4
a contradiction; hence b(A) belongs to A. O

Lemma 2.6. ([1]) Let A C R" be compact and convex and consider A! = A + B,
where B is the closed unit ball. Then b(A') belongs to A.

Proof. As above assume it is not so. Set a to be m4(b(A!)), the point of A nearest
to b= b(A'), set p=b—a and p = p/||p||. Then

1
(22) Il = s [ <2 a,p> dm,
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and as, before, to reach a contradiction it is enough to show that the right hand side
is non positive. It is convenient to consider Sp, the linear transformation mapping

z into its symmetric with respect to the hyperplane orthogonal to p through a:
Sp(z)=a+(z—a)—-2<z~-a,p>p

Set AL = {a€ Al|<z—a,p>>0}, AL ={z€ A<z —-a,p><0} We
remark that Sp(AL) C Al. In fact fix z in A} and consider Sp(z):

Set z' to be the projection of 7 4(z) on the line through z and Sp(x). By the
Pythagorean theorem to show that ||z — ma(z)|| > ||Sp(z) — ma(z)|| it is enough
to show that ||z — ='|| > ||Sp(z) — £||. We have that

lz-2||=<z-2p>=<z-0a,p>- <z —-@a,p>

and

ISp(z) — || = — < Sp(z) —2',p>=—-<Sp(z) —a,p>+ <z —a,p>
=<z-a,p>+<1 —a,p>.

Since, again by the characterization of the best approximation, z' belongs to Al,

d(Sp(z), A) < |ISp(z) — ma(2)]| < |lz - 7a(@)| = d(z, A) < 1.
Then Sp(z) belongs to Al. Write A! as (A} U Sp(A})) U (AM\(A} U Sp(4})))
and consider the integral in (2.2) separately on these two subsets. Remark that the
first is invariant with respect to the transformation Sp, that the determinant of
the Jacobian of the transformation Sp is one and that the mapz =+ <z —a,p >
is antisymmetric with respect to Sp. The change of variables formula hence yields

<z-a,p>= / < Sp(z) —a,p>
Sp(ALUSP(AL)) (ALUSp(AL))
= - / <zr-—-a,p>.
Sp(ALUSp(AL))

Hence this integral is zero. Since A'\(AX U Sp(Al)) is contained in AL,

/ <z—-a,p><0
Al
the desired contradiction. a

Using Lemma 2.5 and 2.6, we have the following local Lipschitz barycentric
selection theorem.
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Theorem 2.7. ([8]) Let F : R® — R" be a local Lipschitz set-valued map with
compact convex images, i.e., there exists a constant Kn > 0 such that

du(F(z),F(y)) < Kn-|z—yl, Vz,y€ By = {z € R",|z| < N}.

Assume moreover that there exists a constant C > 0 such that || F(z)|| < C-(1+(z|),
for every z € R™. Then there exist a constant Cy > 0 and a single valued map
f :R™ 5 R", local Lipschitzean with constant Cy, a selection from F.

Proof. By Lemma 2.5 and 2.6, the single valued map b! = z — b(F(z) + B) is a
selection from F. We have to prove that it is a local Lipschitzean selection.

Fix z,z’ € By. Call $(z) = F(z) + B,®'(z’) = F(z') + B. Since ||®(z)|| <
|1F(z)+ B|| < IFz)|+1 < C-1+)+1<C-01+N)+1 = Cp and
mp(®(z)) < Cnn, we have

1 1
Ma(@(@) Joey T ma@ @) ey ” T
1 1
S l( mn((b(z)) - m"(Q’(z’)) ) Q(z)ﬂ‘l”(z')zdmn l
(2.3)

1 1
| ma(2(z)) Q(z)\(”(z’)z dtin = M (P'(2') Jor (z )\ &(z)
< |[ma(®(x)) — mn(®'(z))] - Cn: - Cyne [ (mn(B))?
+ {mn(2(z) \ () + ma(®'(z') \ 8(2))} - C+ - Cnre/mn(B).
We wish to express the above estimate in terms of dy(®, ®’). For this purpose, we

begin to compare m,(® + éB), § > 0, and m,(®). Since the unit ball of R is
contained in the unit cube {|x;| < 1,i=1,---,n}, we can as well estimate

z dm,,

malp+ Y biei | o € B, (6] < 5}

where {e;} is an orthonormal basis. From elementary calculus we have that when
S is a convex set and v a unit vector, the measure of {S + §,v | |6,] < 6} is
M (S) +18|mp-1(P.(S)) where P, is the projection of S into the hyperplane normal
to v through the origin (P, (S) is the "shadow™ of S). Denote by

v
@ ={p+) bieilp € 8,6 < 5}
i=1
and by P; the projection along the direction e;. Recursively we obtain
n-1

M (@n) < M (®) +8 > mp_1(Pa_j(®nj)).

=0
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Since @ is contained in (M + 1) B, each element of each P;(®;) has a distance from
the origin of at most (M + 1) + §y/n, so that, setting B,._, the unit ball in R*~1,

m,(®+dB) < M (Pn)
< Mp (@) + dnmp_ (M +1+ 6vn)B,-1)
< m,(®) + 0K

for some constant K. Set & to be dy(®,®'). Then & C ® + 6B and & C &' + 4B,
hence mn(®\®') < Mmn (@ +06B) — ma(P'), and ma (2\P) < M (® +6B) — mn(P).
Analogously, [mq(®) — m,(®')| < Ké. Hence by (2.3), we obtain

|b(F(z) + B) — b(F(z') + B)| < Cy - du(F(z) + B, F(z') + B)

for a suitable C},. Finally, since Ky is the local Lipschitz constant of F and set
Cn to be Ky - K. We have

|bl(z) — b'(z")| < K - du(F(z) + B,F(z') + B)
< K- dH(F(I),F(I,)) < éN : d(xiz’)v
i.e. f =b! is the required Lipschitzean selection. 0

Thus we have the following another main theorem by the above lemmas and
Theorem 2.7.

Theorem 2.8. ([7]) Assume that
(i) for each N > 0, there exist constants C > 0 and Cn > 0 such that

dH(O’(t,I) - d(t’ y)) <Cn- |.’L‘ - yla z,y € Bn,
dH(b(t,.’L‘) - b(tiy)) < CN ) ‘I - yl! T,y € BN$
lo@t, z)|| + b, z)l < C- (1 +|z]), z€R?,

where By = {z € R%,|z| < N},
(ii) there exists a constant K > 0 such that

Lot )P+ lal- (e, 2)| < K02 + lal?),

where r(t) is a progressively measurable such that

E [|z0|2 + /0 T{lb(s,0)|2 + r(s)z}] ds < oo.

Then (1.1) has a solution X, and

t
E[X.?| <E [|x0|2 + 2K/ r(s)zds] 2Kt vt <T.
0
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Proof. By the hypothesis (i) and Theorem 2.7, o and b have local Lipschitzean
selection. Thus the proof is complete by Theorem 2.3. O
3. MaIN REsSuLTS

Theorem 3.1. ([8]) Assume that o : [0,T] x R* - P(R®R"), b:[0,T] x R% -
P(R?) are closed convex set-valued which are Lipschitz, i.e., there exists a constant
L > 0 such that

{ dH(O’(t, I),O’(t, y)) <L- Il' - yla
dH(b(t1 x))b(t’ y)) < L- ].’L‘ - yl

Then there exists a solution X € A7 = L9(2 = C([0,T] — R?)) for the stochas-
tic differential inclusion (1.1).

Proof. For X € A9, let

S(X) ={ 0e€ A8, =z +/; f(s)dB, +/; g(s)ds,
f(s) € o(s,X,), g(s) € b(s, X.), f,g: predictable } .

The proof is complete if we prove that there exists a fixed point for the map
S : A7 - P(A?), where P(A?) = {A C A7 | A is bounded and closed in C(fo,T) —»
RY) as.}.

For the existence of fixed point, we have to prove that S is a contraction map
for sufficiently small T, i.e., there exists p € (0,1) such that dg(S(X),S(Y)) <
PlIX = Y| pa.

For closed convex set C C R?, define Pc(zx) € R? by

|l — Pe(z)|| = d(,C).

Then Pc(z) exists uniquely. Let Z € S(X) and Y € A9. Then there exist f, €
o(s, X,) and g, € b(s, X,) such that

t t
Zy=xz0+ / fsdB,s + f 9sds.
1) 0

Define f,, §, by

fo = Poquy)(£s) and g, = Pys v,)(9,)-

By hypothesis,
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Ifa - fa‘ < dH(o(s,X,),a(s,Y.)) < L- lXJ - YB' and
lgs - gal S dH(b(S,X,),b(S,Y,)) S L- IXA - 1/0|

t ¢
Letting Z; = zo + / fsdBs + / Jsds, we have Z € S(Y). Note that
0 0

E| sup |Z, - Z,7]
0<t<T

T . T
<or-B[ [ - dias]+Cr-B [ [ o= avas]
0 0
T T
gL-cT-f E[IX,—Y,I"]ds+L-CT-/ E[|X, - Y,[%)ds
0 0
$2L-CT-T-E[ sup |X,—Y.|q]
0<s<T
—9L-Cp-T-|IX - Y|[%.

Thus for every Z € S(X), there exists Z € S(Y) such that ||Z - Z|1%, <
2L - Cr - T||X = Y||%. Therefore du(S(X),S(Y)) < (2L-Cr- TYY9 .|| X = Y| ss-
Taking T sufficiently small, it can be that 2L-Cr-T < 1. Hence S is a contraction
map. Connecting the solutions, we can prove the existence of the solution X, of

(1.1) on [0,T). O

Theorem 3.2. ([9]) Let X; be any solution of (1.1). Then X, is bounded, i.e., for
P22

E[ sup |X,{P] < oo.
0<s<t

Proof. Let X, be a solution. Then there exist f. € 0(X,) and g, € b(X,) such that

t t
X.e=z+ / f.dB, + / gsds.
0 0

Since
t
Bl sup X1 < ¥~ el + 972G [{ [ s} ]
0<s<t 0
t
+3”“E[{/ lgalds} |
0
t t s
<w-tiap+ 320 [ ([ \1Pas)( [ 14517 ]
0 0

t t
+¥1E | / lg4Pds{ f 1dsp" |
0 0
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< ap+@ar [ B
+3"1TP“At E||gs|P)ds

< 3 Y|P 4+ 37710, T /0 t E[lo(X,)|P)ds
+3p-17p1 /0 " B(b(X,)Plds

< 3 lglP 4 3P0, T /0‘ KP(1+ E[|X,|?])2P'ds
+ gr-ir-l fo t K?(1+ E[|X,|F])2P " ds,

if we put ¢(t) = Efsupoc,<, |X,I),
p(t) < 377 z|P + 62 KPTEC, + 62" 1KPT 3 ¢, /0 t o(s)ds
+ 6P 1KPTP 4 Gp-1KPTP-1 fo " o(s)ds
=3 zP + 6* " KPTE(C, + 1)

t
+EIKP(TSCy + TP / o(s)ds.
()
By Gronwall’s inequality,

w(t) < (3"’"1|:::|"J + 6”_1K”T5(Cl +1))- exp(ﬁ”“lK”(TL;—zcl + TP~ 1)1).
Hence X, is bounded.

Let {X{}n=1,2,.. be a sequence of solutions of (1.1) converging to Xq, i.e.,

lim E[ sup |X{* - X,|?] = 0.
n—oo 0S¢ST

Since {X7'} are solutions of (1.1), there exist sequences {£"'} and {n}'} such that
¢ ¢
Xy =z+[ £, dB, +/ 7, ds.
0 0
Put £ = P,(x,) (&) and i} = Pyx,)(nf). Then by hypothesis,

I€r - €81 < du(o(X.),0(XP)) < L|1Xy — XP|
InF — 7] < da(b(Xe), b(XP)) < L)X, — XP|.
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Note that {£P'} and {#]'} are LP-bounded. In fact,

T T T
E| f \ErlPde] < E / lo(X,)|Pdt] < E[2PK? f (1 + | X.[P)dt).

Thus there exists a weak convergent subsequence. For simplicity, assume that
{€r} converges to £ weakly. Since the sequence does not converge strongly, we

have to take some subsequence which converges strongly. Let K, be the set of

all convex combinations of £r,£r+!, €742, ... . Then since K, is closed convex and

weak-closed, £° € K,,. Thus £° € nl_(,,.
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