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CLASSIFICATION OF CERTAIN IDEMPOTENT
MATRICES OVER BINARY BOOLEAN ALGEBRA

SEOK-ZUN SONG AND KYOUNG-TAE KANG

ABSTRACT. In this article we classify certain matrices over binary Boolean al-
gebra to find out whether they are idempotent or not for n X n matrices. That
is, we determine whether all 3 x 3 matrices are idempotent or not and extend
this result to certain n x n binary Boolean matrices. We obtain these results
by investigating the sums of cells of diagonal cells and off-diagonal cells. Con-
sequently, we classify completely the matrices of the sums of mutually distinct
four cells and obtain the cases of being idempotent.

1. Introduction.

If S is a set of one element, then the power set of S consists of two subsets of
S. We denote the null set by 0 and S by 1. Let B be the power set of S. In B,
let us denote the union of the elements by +, intersection by juxtaposition, and
complementation by *. Then B = {0, 1} with these operations is an algebra
and called the binary Boolean algebra([6]).

Let M, (B) denote the set of n x n matrices with entries in B which are
called the set of n x n binary Boolean matrices. If O is the zero matrix([6}),
then O? = O. Also the identity matrix I([6]) satisfies I> = I. Thus there
exist matrices A, in M, (B) such that A,® = A,. We call these matrices
A, as idempotent matrices. For these idempotent matrices, it is natural to
ask the following questions: What are their forms and how many idempotent
matrices exist in M, (B) ? In this article, we study on these problems. That
is, we investigate whether a given matrix is idempotent or not. First of all, we
determine whether all matrices with only one nonzero entry are idempotent or
not. And we determine whether all matrices with many nonzero entries are
idempotent or not by using the above matrices.

In section 2, we give some definitions and some preliminaries. In section 3, we
determine whether all matrices with only four nonzero entries are idempotent
or not. In section 4, we research all 3 x3 binary Boolean matrices and determine
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their idempotency. Thus we obtain all 123 idempotent matrices in M3(B). We
also show that the other binary Boolean 3 x 3 matrices are not idempotent and
that the number of them is 389.

2. Definitions and Preliminaries.

We introduce some definitions and notations which we shall use in this ar-
ticle. Let B denote the binary Boolean algebra of two elements 0 and 1. Its
arithmetic is the same as that of any ring, except that 1+ 1 = 1([5]). In this
article, the entries of all matrices are in the binary Boolean algebra. Addition
and multiplication of matrices over B are defined as if they were over a field([5)).
The matrix with all entries equal to 0 is called zero matriz and denoted by O
. The matrix with all entries equal to 1 is denoted by J([5],[6]).

The zero-one n x n matrices with only one entry equal to 1 are called
cells([1]). If the nonzero entry occurs in row i and columa j, we denote the cell
by E;; and say that the cell is in 7ow i and it is in column j([1]). A line([1})
1s a row or column. A set of cells is collinear([1]) if they are all in the same
line. When ¢ # j, we say E;; is an off-diagonal cell; E;; is a diagonal cell({1]).
we notice that any n x n matrix can be represented as the sum of the distinct
cells.

The following proposition is an immediate consequence of the rules of matrix
multiplication.

Proposition 2.1([1]). For all indices i, j,u, and v, E;;E,, = E;, or O ac-
cording as j = u or j # u.

Corollary 2.1.1([1]). For all cells C, C? = C or O according as C is a
diagonal or off-diagonal cell.

Proposition 2.2([1]). Suppose C and D are cells and CD # O.
(a) IfC and D are off-diagonal cells, then either
(i) CD is an off-diagonal cell distinct from C and D, and DC = O
or
(ii) D = C7T, and CD and DC are distinct diagonal cells.
(b) IfC is a diagonal cell and D is not, then CD = D, and C and D are
in the same row.

If D is a diagonal cell and C is not, then CD = C, and C and D are
in the same column.
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(c) If C and D are diagonal, then C = D.

Proof. The proofs are all routine applications of Proposition 2.1. We prove (a).
Suppose C = E;; and D = E,,,, where i # j and u # v. Proposition 2.1 implies
that u = § and CD = E;, because CD # O. Then v # j and u # i because
u # v and i # j. Therefore CD is distinct from C and D. If v # 1, then
CD is off-diagonal and DC = O by Proposition 2.1. If v =4, then D = C7,
DC = E;;, and CD = E;; by the same proposition. The proofs of (b) and (c)
are similar to (a). O

Let M,,(B) be the set of all n x n matrices whose entries are in B = {0, 1}.

Throughout this article, we assume that all matrices are in M, (B).

We call a matrix FE is idempotent if E2 = E. If not, E is called nonidem-
potent.

Notice that all diagonal cells are idempotent and all off-diagonal cells are
nonidempotent in M, (B). Furthermore all matrices of sums of mutually dis-
tinct diagonal cells are idempotent.

Lemma 2.3. Suppose E is a diagonal cell and F is an off-diagonal cell. Then
their sum is idempotent if and only if they are collinear.

Proof. (=) : Suppose (E + F)? = E + F. By Proposition 2.1, E? = FE and
F2 = O. Therefore E+ EF + FE = E+ F and so EF + FE = F. By
Proposition 2.2-(b), E and F' are collinear.

(«<=) : Without loss of generality, we assume that E = E;; and F' = Ej;
with 7 # j.. Then

E+ F)? = (Ey; + E;;)? = EX + EE;; + E;;Ey;; + EZ
7 i J J J
:Eii+Eij+0+O:E+F

Thus F + F' is idempotent. O

Lemma 2.4. Suppose E and F are distinct off-diagonal cells. Then their sum
is not idempotent.

Proof. If E and F are in the same row, say E = E;; and F = E; with ¢ # 7,k
and j # k, then (E+ F)? = O and so F + F is not idempotent. If E and F' are
in the same column, say F = E;j and F = Ey; with i # j,k and j # k, then
(E+ F)? = O and so E + F is not idempotent. If E and F are not in the same
line, say E = E;; and F = Ejy; with ¢ # j,k and k # I, then (E+ F)? = O or
Ei or Ex;j or Ey + Eyj according as (j # kand l # i) or (j =k and I #1) or
(j#kand!=1i)or (j =k and [ =) and so E + F' is not idempotent. 0

From the same method in the proof of lemma 2.4 we obtain the general
result.
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Corollary 2.4.1. Suppose E), Es, - -- , Ex are mutually distinct off-diagonal
cells. Then their sum is not idempotent.

Lemma 2.5. Suppose E, F, and G are mutually distinct cells, E and F are
diagonal but G is not. Then their sum is idempotent if and only if G is in the
same line to FE or F'.

Proof. The necessity is immediate and so we only prove the sufficiency. Suppose
(E4+F+G)? = E+F+G. Then by Proposition 2.1, E2=E, F?=F, EF =
FE =0 and G? = 0. So we have

E+F+(EG+GE)+(FG+GF)=E+F+G (2.1)

Notice that EG+GE =0 or G, and FG+GF = O or G. Therefore we
obtain the equation (2.1) implies that (EG + GE) + (FG + GF) = G. Thus
we have EG + GE = G or FG + GF = G. By Proposition 2.2-(b), E and G
are in the same line or F and G are in the same line. O

We can extend this Lemma 2.5 to the case of many diagonal cells.

Corollary 2.5.1. Suppose E1, E,,--- , Ex, and F are mutually distinct cells,
E's are diagonal but F is not. Then their sum is idempotent if and only if F
is in the same line to at least one of E1, Fy, - -, E}.

Lemma 2.6([1]). Suppose E, F, and G are mutually distinct cells, E is diag-
onal but F' and G are not. Then their sum is idempotent if and only if they
are collinear.

Proof. Suppose S = E + F + G and 8% = S. By corollary 2.1.1, E? = E and
F? = G? = O. Therefore we have

EFE+F+G=E+(EF+FE)+ (EG+GE)+ (FG + GF) (2.2)

First we will show that FG + GF = O. By the equation (2.2), F'G cannot
be an off-diagonal cell distinct from F and G, nor can FG and GF be a pair
of distinct diagonal cells. Therefore by Proposition 2.2-(a), FG = O. Similarly
GF = O. Next we will show that EF + FE is either O or F. If EF # O
or FE # O, then EF = F or FE = F by Proposition 2.2-(b). Similarly,
EG + GE is either O or G. Therefore we obtain the equation (2.2) implies
that EF + FE = F and EG+ GE = G. By Proposition 2.2-(b), E and F are
colliner, and F and G are colliner.

Without loss of generality, we assume that £ = E;; and F = E;; for some
J # i. Then for some k # i, G is of the form Ey; or E;;.. Now G # Ej; because
GF = 0. So we have G = E;;.. Thus E, F, and G are collinear. O

- 4 -
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3. All idempotent matrices that are the sums of four
cells in M, (B)

In this section, we classify completely the matrices of the sums of mutually
distinct four cells and obtain the cases of being idempotent.

Lemma 3.1. Suppose Ei, Es, E3, and E, are mutually distinct diagonal cells
in M,(B) with n > 4. Then their sum is idempotent.

Proof. It is trivial. O

Lemma 3.2. Suppose E1, E», E3, and Fy are mutually distinct cells, E, E,
and Ej are diagonal but F, is not. Then their sum is idempotent if and only
if Fy is in the same line to at least one of Ey, E5 or Es.

Proof. This is a special case of corollary 2.5.1. O

Theorem 3.3. Suppose E, F,G, and H are mutually distinct cells, E and F'
are diagonal but G and H are not. Then their sum is idempotent if and only
if they satisty one of the following conditions;
(1) G is in the same line to each E and F and H = GT.
(2) G and H are collinear and they are in the same line to E or F'.
(3) G and H are not collinear with GH = HG = O and G is in the same
line to either E or F and H is so.

Proof. The necessity is immediate and so we only prove the sufficiency. Suppose
(E+ F+G+ H)2=E+F+G+ H. By Proposition 2.1, E?=FE, F? =
F, G?=H? =0, and EF = FE = O. Thus we have

E+F+ (EG+GE)+(EH+ HE) + (FG + GF)
+(FH+HF)+(GH+ HG)=E+F+G+H (3.1)

Notice that EG+GE =0or G, EH+ HE=0or H, FG+GF =0 or
G, and FH + HF = O or H. First we suppose that GH + HG # O. Then
GH +# or HG # O, say GH # O. By Proposition 2.2-(a), H = GT and GH
and HG are distinct diagonal cells. Therefore we obtain the equation (3.1)
implies that GH + HG = E + F. Without loss of generality, we assume that
GH = FE and HG = F. Let E = E;; and F = Ej; with ¢ # j. Then G is of
the form E;; with ¢ # k because GH = E. Similarly H = E;; with j # t.
Since H = GT, Ejt = Exiandso j = kand t = 1. That is, we obtain that
E = E;, F = Ej;;, G = E;;, and H = Ej; which satisfy the condition (1).
Next we suppose that GH + HG = O. Then we have

(EG+GE)+(EH+ HE)+ (FG+GF)+(FH+HF)=G+H

-5 -
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Notice that (EG+ GE = G or FG+ GF = G) and (EH + HE = H or
FH + HF = H). Without loss of generality, we assume that E = E;; and
F = E;; with i # j.

We prove this theorem by three steps.

Step 1. Assume that EG + GE = G and FG + GF =G.

By proprosition 2.2-(b), E and G are in the same line, and F and G are
in the same line. Thus G is in the same line to each E and F. Therefore the
form of G is either E;; or Ej;.

Case1.1) EH+ HE=H and FH+ HF = H.

By Proposition 2.2-(b), E and H are in the same line, and F and H are
in the same line. So H is in the same line to each E and F. Thus the form
of H is either Ej;; or E;; according to G = E;; or G = Ej;. Therefore
GH + HG = E + F(# O) which is a contradiction.

Case1.2) FEH+ HE =H and FH + HF = O.

By Proposition 2.2-(b), E and H are in the same line, and F and H are not
in the same line. Thus H is of the form E; or Ey; with i # k,t. If G = Ei;,
then H is of the form E; with k # j (If not, H = E,; and t # j and so
HG = E,;;(# O) which is a contradiction.). Therefore FE,G, and H are in the
same column. If G = Ej;, then H is of the form E;; with ¢t # j (If not, H = Ej;
and k # j and so GH = Ey(# O) which is a contradiction.). Therefore E,G,
and H are in the same row.

Case 1.3) FH+ HE=0Oand FH+ HF = H.

By the similar method of case 1.2), F,G, and H are in the same line.

Step 2. Assume that FG + GE = G and FG + GF = O.

By Proposition 2.2-(b), E and G are in the same line, and F and G are
not in the same line. So the form of G is either E;; or E,; with i # k,t and
j#k,t.

Case2.1) FH+ HE =H and FH+ HF = H.
By the similar method of case 1.2), FE,G, and H are in the same line.
Case 2.2) FH+ HE =H and FH + HF = 0.

By Proposition 2.2-(b), E and H are in the same line, and F and H are
not in the same line. So H is of the form either E;, or Ep; with i # a,b and
j #a,b.

(a) G = Eik and H = E,'a.

We notice that k # a because G and H are distinct. Thus E,G, and H are
in the same row.

(b) G= E,‘k and H = Ebi-

Now HG = Ey;E;, = Epi. But this cell is distinct from G and H. This
contradicts to GH + HG = O.

(C) G = Et,' and H = E,'a.
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Now GH = E;E;, = E,,. But this cell is distinct from G and H. This

contradicts to GH + HG = O.
(d) G = Eti and H = Eb,'.

We notice that k # b because G and H are distinct. Thus F,G, and H are
in the same column.

From (a),(b),(c), and (d) E,G, and H are in the same line.

Case23) EH+HE=0and FH+ HF =H.

By Proposition 2.2-(b), E and H are not in the same line, and F' and H
are in the same line. Thus H is of the form either E;, or E; with a # 1, j and
b#£1,].

(¢) G =Ei and H = Ej,.

Since GH = HG = O, k # j and a # 1. Thus G is in the same row only to
E and H is in the same row only to F. If a = k, then they satisfy the condition
(2). If @ # k, they satisfy the condition (3).

(f) G = Eik and H = Ebj-

Notice that k # b (If k = b, then GH = E;;(# O) which is a contradiction.).
Thus G is in the same row only to E and H is in the same column only to F.
Therefore they satisfy the condition (3).

(g) G = Eti and H = Eja-

Notice that t # a (If t = a, then HG = Ej;(# O) which is a contradiction.).
Thus G is in the same column only to E and H is in the same row only to F.
Therefore they satisfy the condition (3).

(h) G = Eti and H = Ebj-

Since GH+ HG =0, b#1iandt # j. Thus G is in the same column only
to E and H is in the same column only to F. If b = t, then they satisfy the
condition (2). If b # ¢, then they satisfy the condition (3).

Step 3. Assume that EG + GE = O and FG + GF =G.

The proof is similar to Step 2. O

Definition. Let S be a binary Boolean matrix in M, (B). Then we call S a
rectangle form if S has only four 1’s and the four 1's constitute a rectangle
with a 1 on diagonal and the other three 1’s on off-diagonal.

Theorem 3.4. Suppose E,G, H, and K are mutually distinct cells, F is di-
agonal but G, H, and K are not. Then their sum is idempotent if and only if
they satisfy one of the following conditions;

(1) They are collinear

(2) They have the rectangle form.

Proof. The necessity is immediate and so we only prove the sufficiency. Suppose
(E+G+H+K)? =E+G+ H+ K. By Proposition 2.1, E? = E and

- 17 -
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G? = H?2 = K2 = 0. Thus we have

E+(EG+GE)+ (FEH+ HE)+ (EK + KE)
+(GH+ HG)+ (GK + KG) + (HK + KH)
=F+G+H+ K (3.2)

We notice that EG+GE =0Qor G, EH+HE =Qor H,and EK+KFE =
O or K. First we show that GH + HG = O or K. Suppose GH + HG # O.
Then GH # O or HG # O, say GH # O. By Proposition 2.2-(a), GH
is an off-diagonal cell distinct from G and H with HG = O. Thus we have
the equation (3.2) implies that FG = H which is desired result. Similarly,
GK+KG=QorHand HK+ KH =0 orG.

Step 1. Assume that GH + HG = O.

Without loss of generality, we assume that £ = E;;.

Case1.1) GK+KG =0 and HK + KH = O.

We notice that the equation (3.2) implies that EG+GFE =G, EH+HE =
H, and EK + KE = K. By Proposition 2.2-(b), E and G are collinear, FE
and H are collinear, and FE and K are collinear. Thus G is of the form E;, or
Ey;. Similarly, H = E;. or Eg; and K = E;. or Ey; with i # a,b,c,d, e, and f.

(a) G=E;, H=F;, and K = F,,.

Since G, H, and K are mutually distinct cells, %,a,c, and e are mutually

distinct. Therefore F,G, H, and K are in the same row.
(b) G = Eia; H = Eic, and K = Efi.
Now KG = Ej,(# O) which is impossible.
(C) G = E—ia, H= Edi, and K = Eie-
Now HK = Ej.(3# O) which is impossible.
(d) G = Eia, H = Edi) and K = Efi.

Now KG = Ef,(# O) which is impossible.

If G = E;, then by the above method, F,G, H, and K are in the same
column.

Case 1.2) GK+ KG =H and HK + KH = O.

We notice that the equation (3.2) implies that FG+GE =G, FH+HE = O
or H, and EK + KE = K. By Proposition 2.2-(b), E and G are collinear,
and E and K are collinear. Thus G is of the form E;, or Ep;, and K is of the
form E;. or E4; with i # a,b,c, and d. Since GK + KG = H, (GK = H and
KG =0)or (GK =0 and KG = H).

() GK =H and KG = 0.

Since KG = O, G and K are of the forms (G = F;, and K = E;.) or
(G = Epi and K = E;.) or (G = Ep; and K = Ey;). Let G = E;; and K = E;..
Since GK = H, a =i which is impossible. Let G = E; and K = E;.. Since

- 8 -
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GK = H and H is an off-diagonal cell, H = Ep. and b # c. Since i # b,c,
EH + HE = O. Thus E,G, H, and K have the rectangle form. Let G = Ey;
and K = Ey4;. Since GK = H, d =1 which is impossible.
(f) GK=0and KG=H.
The proof is similar to the above (e).
Case 1.3) GK+ KG=0and HK+ KH =G.

By the similar method of case 1.2), E,G,H, and K have the rectangle
form.

Case 1.4) GK+ KG=H and HK + KH =G.

We notice that the equation (3.2) implies that EK + KE = K. By Propo-
sition 2.2-(b), E and K are collinear. Thus K is of the form E;, or Ep; with
i # a,b. Now, we will only consider K = E,,, GK = H, and HK = G. Since
GK = Hand HK =G, KG = KH = 0. Since K = E;, and GK = H,
G is of the form E. and H is of the form E., with i # ¢ and ¢ # a. Since
HK = G(# O), a = c which is impossible.

Step 2. Assume that GH + HG = K.

The proof is similar to Step 1. O

4. All 3 x 3 idempotent matrices.

Now in this section we determine that each 3 x 3 binary Boolean matrix
is idempotent or not. To determine them, we investigate the sums of cells
according to diagonal cells and off-diagonal cells. Through this section, D and
D;’s mean mutually distinct diagonal cells and F' and F}’s off-diagonal cells.

0. Matrix of zero cell.

The zero matrix is trivially idempotent.

1. Matrices of one cell.

1) The diagonal cells are idempotent and the number of them is 3.
2) The off-diagonal cells are not idempotent and the number of them is
6.
2. Matrices of two cells.
1) The matrices of the forms D; + D, are idempotent and the number
of them is 3.
2) The matrices of the forms D + F;
(a) If they are collinear, then the matrices are idempotent and the
number of them is 12.
(b) If they are not collinear, then the matrices are not idempotent and
the number of them is 6.
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3) The matrices of the forms F) + F, are not idempotent and the number
of them is 15.
3. Matrices of three cells.
1) The matrix of the form D; + D, + D3 is idempotent and the number
of it is 1.
2) The matrices of the forms D; + D, + F;
We note that F' is in the same line to D; or D;. So the matrices are
idempotent and the number of them is 18.
3) The matrices of the forms D + F} + Fy;
(a) If they are collinear, then the matrices are idempotent and the
number of them is 6.
(b) If they are not collinear, then the matrices are not idempotent and
the number of them is 39.
4) The matrices of the forms F; + F, + F3 are not idempotent and the
number of them is 20.
4. Matrices of four cells.
1) The matrices of the forms D; + D, + D3 + F;
We note that F' is in the same line to at least one of Dy, Dy or D3. So the
matrices are idempotent and the number is 6.
2) The matrices of the forms Dy + Dy + Fy + Fy;
(a) If F is in the same line to each D; and D5 and F = F;7, then the
matrices are idempotent and the number of them is 3.
(b) If Fy and F, are collinear and they are in the same line to Dy or
D,, then the matrices are idempotent and the number of them is 18.
(c) If otherwise, then the matrices are not idempotent and the number
of them is 24.
3) The matrices of the forms D + Fy + Fy + Fj;
(a) If they have the rectangle forms, then the matrices are idempotent
and the number of them is 6.
(b) If otherwise, then the matrices are not idempotent and the number
of them is 54.
4) The matrices of the forms F; + F, + F3 + F4 are not idempotent and
the number of them is 15.
5. Matrices of five cells.
1) The matrices of the forms D; + Dy + D3 + Fy + Fy;
(a) If Fy and F; are collinear, then the matrices are idempotent and
the number of them is 6.
(b) If F; = F;”, then the matrices are idempotent and the number of
them is 3.

_10_
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(c) If otherwise, the matrices are not idempotent and the number of
them is 6.
2) The matrices of the forms D) + Dy + Fy + F3 + F3;
For D; = E;; and Dy = E3; the forms of idempotent matrices are the
following 3 matrices and their transposes only;

1 11 1 11 1 01
011 010 1 11
0 00 010 0 0O

Similarly, we have have the same results for the other cases. That is, we
have 18 idempotent matrices and 42 nonidempotent matrices of these forms.
3) The matrices of the forms D; + Fy + F2 + F3 + F; are not idempotent
and the number of them is 45.
4) The matrices of the forms Fy + F; + F3 + F4, + F5 are not idempotent
and the number of them is 6.
6. Matrices of six cells.
1) The matrices of the forms Dy + Dy + D3 + Fy + F + F3;
The forms of idempotent matrices are the following 3 matrices and their
transposes only;

1 11 1 11 1 01
0 11 010 1 11
0 01 011 0 01

That is, we have 6 idempotent and 14 nonidempotent matrices of these
forms.
2) The matrices of the forms Dy + Dy + Fy + Fp + F3 + Fy;
The forms of idempotent matrices are the following 3 matrices and their
transposes only; "

1 11 1 11 0 0O
1 11 0 0 O 1 11
0 0O 1 11 1 11

That is, we have 6 idempotent and 39 nonidempotent matrices of these
forms.
3) The matrices of the forms D+ F + Fy+ F3+ F4+ F are not idempotent
and the number of them is 18.
4) The matrix of the form F} + F; + F3 + F4y + F5 + Fp is not idempotent
and the number of it is 1.
7. Matrices of seven cells.

-11_
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1) The matrices of the forms Dy + Dy + D3 + Fy + Fy + F3 + Fy;
The forms of idempotent matrices are the following 3 matrices and their
transposes only;

1 11 1 11 1 11
1 11 011 010
0 0 1 011 111

That is, we have 6 idempotent and 9 nonidempotent matrices of these forms.
2) The matrices of the forms D, 4+ D, + Fy + F, + F3 + F4 + F; are not
idempotent and the number of them is 18.
3) The matrices of the forms D; + F} + Fy + F3 + Fy + Fs + Fg are not
idempotent and the number of them is 3.
8. Matrices of eight cells.
1) The matrices of the forms Dy + Dy + D3 + Fy + F + F3 + Fy + F;
are not idempotent and the number of them is 6.
2) The matrices of the forms Dy + Dy + F, + Fy + F3 + F4 + Fs + Fg are
not idempotent and the number of them is 3.
9. Matrix of nine cells.
The J is trivially idempotent.
Consequently, there exist 123 idempotent and 389 nonidempotent matrices

in Mg(B)
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