J. of Basic Sciences, Cheju Nat'l Univ. 18(1), 83~89, 2005

The Basic Harmonic forms on a Non-Harmonic Foliation

Jung Eun Han and Seoung Dal Jung Department of Mathematics. Cheju National University

Abstract. We study the basic harmonic forms on non-harmonic foliations and prove that on an isoparametric Riemannian foliation with transverse Killing tension field, (i) if the transversal Ricci curvature is quasipositive, then $H_B^1(\mathcal{F}) = 0$, (ii) if the transversal curvature operator F is quasi-positive, then $H_B^r(\mathcal{F}) = 0$ for 0 < r < q.

1 Preliminaries

Let (M, g_M, \mathcal{F}) be a (p+q)-dimensitonal Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with respect to \mathcal{F} . Let ∇^M be the Levi-Civita connection with respect to g_M . Let TM be the tangent bundle of M and L the integrable subbundle of TM given by \mathcal{F} . The normal bundle Q of \mathcal{F} is given by Q = TM/L. Then there exists an exact sequence of vector bundles

$$0 \longrightarrow L \longrightarrow TM_{\overleftarrow{\sigma}}^{\underline{\pi}}Q \longrightarrow 0.$$
 (1.1)

Let g_Q be the holonomy invariant metric on Q induced by g_M , that is,

$$g_Q(s,t) = g_M(\sigma(s), \sigma(t)) \quad \forall \ s, t \in \Gamma Q \tag{1.2}$$

This means that $\theta(X)g_Q = 0$ for $X \in \Gamma L$, where $\theta(X)$ is the transverse Lie derivative. The transverse Levi-Civita connection ∇ in Q is defined by

$$\nabla_X s = \begin{cases} \pi([X, Y_s]) & \forall X \in \Gamma L\\ \pi(\nabla_X^M Y_s) & \forall X \in \Gamma L^{\perp}, \end{cases}$$
(1.3)

where $s \in \Gamma Q$ and $Y_s \in \Gamma L^{\perp}$ corresponding to s under the canonical isomorphism $Q \cong L^{\perp}$. Then we have the following.

²⁰⁰⁰ Mathematics Subject Classification. 53C12, 57R30

Key words and phrases. basic harmonic form, basic Laplacian

Proposition 1.1 ([3,6]) The connection ∇ in Q is torsion-free and metrical with respect to g_Q .

The curvature R_{∇} of ∇ is defined by

$$R_{\nabla}(X,Y)s = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s$$

for any $X, Y \in \Gamma TM$ and $s \in \Gamma Q$. Since $i(X)R_{\nabla} = 0$ for any $X \in \Gamma L([3])$, we can define the transversal Ricci operator $\rho_{\nabla} : \Gamma Q \to \Gamma Q$ of \mathcal{F} by

$$\rho_{\nabla}(s) = \sum_{a=1}^{q} R_{\nabla}(s, E_{\alpha}) E_{\alpha}, \qquad (1.4)$$

where $\{E_a\}$ is a local orthonormal basic frame of Q. Let $\Omega^*_B(\mathcal{F})$ be the space of all *basic forms* on M, i.e.,

$$\Omega_B^*(\mathcal{F}) = \{ \omega \in \Omega^*(M) | i(X)\omega = 0, \ \theta(X)\omega = 0, \ \forall X \in \Gamma L \}.$$
(1.5)

The exterior differential on the de Rham complex $\Omega^*(M)$ restricts by the cartan formula $\theta(X) = di(X) + i(X)d$ to a differential $d_B : \Omega_B^r(\mathcal{F}) \to \Omega_B^{r+1}(\mathcal{F})$. The basic cohomology $H_B^*(\mathcal{F}) = H_B(\Omega_B^*(\mathcal{F}), d_B)$ plays the role of the De Rham cohomology of the leaf space M/\mathcal{F} of the foliation. The mean curvature vector field τ of \mathcal{F} is defined by

$$\tau = \sum_{i=1}^{p} \pi(\nabla_{E_i}^M E_i),$$
(1.6)

where $\{E_i\}_{i=1,\dots,p}$ is an orthonormal basis of L. The mean curvature form κ is defined by $\kappa(Z) = g_Q(\tau, Z)$ for all $Z \in \Gamma Q$.

From now on, let \mathcal{F} be an *isoparametric* foliation, i.e., $\kappa \in \Omega_B^1(\mathcal{F})$. It is well-known ([6]) that if $\kappa \in \Omega_B^1(\mathcal{F})$, it is closed, i.e., $d\kappa = 0$. We also need the star operator $\bar{*} : \Omega_B^r(\mathcal{F}) \to \Omega_B^{q-r}(\mathcal{F})$ naturally associated to g_Q . The relations between $\bar{*}$ and * are characterized by

$$\bar{*}\phi = (-1)^{p(q-r)} * (\phi \land \chi_{\mathcal{F}}),$$
$$*\phi = \bar{*}\phi \land \chi_{\mathcal{F}}$$

for $\phi \in \Omega_B^r(\mathcal{F})$, where $\chi_{\mathcal{F}}$ is the characteristic form of \mathcal{F} and * is the Hodge star operator. So we can define a Riemannian metric \langle , \rangle_B on $\Omega_B^r(\mathcal{F})$ by

$$\langle \phi, \psi \rangle_B = \phi \wedge \bar{*}\psi \wedge \chi_{\mathcal{F}} \quad \forall \phi, \psi \in \Omega^r_B(\mathcal{F}).$$
(1.7)

Then the global inner product is given by

$$\ll \phi, \psi \gg_B = \int_M \langle \phi, \psi \rangle_B$$

With respect to this scalar product, the adjoint $\delta_B : \Omega_B^r(\mathcal{F}) \to \Omega_B^{r-1}(\mathcal{F})$ of d_B is given by

$$\delta_B \phi = (-1)^{q(r+1)+1} \bar{\ast} (d_B - \kappa \wedge) \bar{\ast} \phi.$$
(1.8)

Then the basic Laplacian $\Delta_B = d_B \delta_B + \delta_B d_B$ explicitly involve the mean curvature. Let

$$\mathcal{H}_B^r(\mathcal{F}) = Ker\Delta_B \tag{1.9}$$

be the set of the *basic harmonic forms* of degree r. It is well known [2] that for $\kappa \in \Omega^1_B(\mathcal{F})$,

$$\Omega_B^r(\mathcal{F}) = imd_B \oplus im\delta_B \oplus \mathcal{H}_B^r(\mathcal{F}) \tag{1.10}$$

with finite dimensional $\mathcal{H}_B^r(\mathcal{F})$.

In this paper, we study the basic hrmonic forms under the curvature conditions on the non harmonic foliation.

2 The basic harmonic forms

Let (M, g_M, \mathcal{F}) be a compact Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with $\kappa \in \Omega^1_B(\mathcal{F})$. Let $\{E_a\}_{a=1,\cdots,q}$ be a local orthonormal basic frame with $(\nabla E_a)_x = 0$ for Q and $\{\theta^a\}$ its g_Q -dual. Then we have

Lemma 2.1 ([1]) On the Riemannian foliation \mathcal{F} , we have

$$d_B\phi = \sum_a \theta^a \wedge \nabla_{E_a}\phi, \quad \delta_B\phi = -\sum_a i(E_a)\nabla_{E_a}\phi + i(\tau)\phi.$$

Now, we introduce the operator $\nabla_{tr}^* \nabla_{tr} : \Omega_B^*(\mathcal{F}) \to \Omega_B^*(\mathcal{F})$ as

$$abla^*_{tr}
abla_{tr} = -\sum_a
abla^2_{E_a,E_a} +
abla_{ au},$$

where $\nabla_{X,Y}^2 = \nabla_X \nabla_Y - \nabla_{\nabla_X Y}$ for any $X, Y \in TM$. Then we have

Proposition 2.2 The operator $\nabla_{tr}^* \nabla_{tr}$ satisfies

$$\ll \nabla_{tr}^* \nabla_{tr} \phi_1, \phi_2 \gg_B = \ll \nabla \phi_1, \nabla \phi_2 \gg_B$$
(2.1)

for all ϕ_1 , $\phi_2 \in \Omega_B^*(\mathcal{F})$ provided that one of ϕ_1 and ϕ_2 has compact support, where $\langle \nabla \phi_1, \nabla \phi_2 \rangle_B = \sum_a \langle \nabla_{E_a} \phi_1, \nabla_{E_a} \phi_2 \rangle$.

Proof. For any $\phi_1, \phi_2 \in \Omega^*_B(\mathcal{F})$, we have

$$\begin{split} \langle \nabla_{tr}^* \nabla_{tr} \phi_1, \phi_2 \rangle_B &= -\sum_a \langle \nabla_{E_a} \nabla_{E_a} \phi_1, \phi_2 \rangle_B + \langle \nabla_\tau \phi_1, \phi_2 \rangle_B \\ &= -\sum_a \{ E_a \langle \nabla_{E_a} \phi_1, \phi_2 \rangle_B - \langle \nabla_{E_a} \phi_1, \nabla_{E_a} \phi_2 \rangle_B \} \\ &+ \langle \nabla_\tau \phi_1, \phi_2 \rangle_B \\ &= -\operatorname{div}_{\nabla}(v) + \sum_a \langle \nabla_{E_a} \phi_1, \nabla_{E_a} \phi_2 \rangle_B + \langle \nabla_\tau \phi_1, \phi_2 \rangle_B, \end{split}$$

where $v \in \Gamma Q$ is defined by the condition that $g_Q(v, w) = \langle \nabla_w \phi_1, \phi_2 \rangle_B$ for all $w \in \Gamma Q$. The last line is proved as follows: At $x \in M$,

$$div_{
abla}(v) = \sum_{a} g_Q(
abla_{E_a}v, E_a) = \sum_{a} E_a \langle
abla_{E_a}\phi_1, \phi_2 \rangle_B.$$

By the Green's theorem on a foliated Riemannian manifold([7]),

$$\int_{M} div_{\nabla}(v) = \ll \tau, v \gg_{B} = \ll \nabla_{\tau} \phi_{1}, \phi_{2} \gg_{B} \cdot$$

Hence the proof is completed. \Box

J

Now we define an operator $A_Y : \Omega_B^r(\mathcal{F}) \to \Omega_B^r(\mathcal{F})$ as

$$A_Y \phi = \theta(Y) \phi - \nabla_Y \phi, \qquad (2.2)$$

where $\theta(Y)$ is the transverse Lie derivative. Now we define new operator $\tilde{\Delta}$ by

$$\hat{\Delta} = \Delta_B - A_{\tau}. \tag{2.3}$$

Then $\tilde{\Delta}$ is a transversally elliptic but it is not self-adjoint. We call $\tilde{\Delta}$ as the generalized basic Laplacian. By a straight calculation, we have

Theorem 2.3 On the Riemannian foliation \mathcal{F} , we have

$$\tilde{\Delta}\phi = \nabla_{tr}^* \nabla_{tr}\phi + F(\phi) \quad \forall \phi \in \Omega_B^r(\mathcal{F}),$$
(2.4)

where $F(\phi) = \sum_{a,b} \theta_a \wedge i(E_b) R_{\nabla}(E_b, E_a) \phi$.

Proof. Let ϕ be a basic *r*-form. Let $\{E_a\}$ be a local orthonormal basic frame for Q with $\nabla E_a = 0$ and $\{\theta_a\}$ its g_Q -dual basis. Then we have

$$d_{B}\delta_{B}\phi = \sum_{a}\theta_{a} \wedge \nabla_{E_{a}} \{-\sum_{b}i(E_{b})\nabla_{E_{b}}\phi + i(\tau)\phi\}$$

$$= -\sum_{a,b}\theta_{a} \wedge \nabla_{E_{a}} \{i(E_{b})\nabla_{E_{b}}\phi\} + \sum_{a}\theta_{a} \wedge \nabla_{E_{a}}i(\tau)\phi$$

$$= -\sum_{a,b}\theta_{a} \wedge i(E_{b})\nabla_{E_{a}}\nabla_{E_{b}}\phi + d_{B}i(\tau)\phi$$

$$\delta_{B}d_{B}\phi = -\sum_{a,b}i(E_{b})\nabla_{E_{b}}\{\theta^{a} \wedge \nabla_{E_{a}}\phi\} + i(\tau)d_{B}\phi$$

$$= -\sum_{a}\nabla_{E_{a}}\nabla_{E_{a}}\phi + \sum_{a,b}\theta_{a} \wedge i(E_{b})\nabla_{E_{b}}\nabla_{E_{a}}\phi + i(\tau)d_{B}\phi$$

Summing up the above two equations, we have

$$\Delta_B \phi = d_B i(\tau) \phi + i(\tau) d_B \phi - \sum_a \nabla_{E_a} \nabla_{E_a} \phi + \sum_{a,b} \theta_a \wedge i(E_b) R_{\nabla}(E_b, E_a) \phi$$
$$= \theta(\tau) \phi - \sum_a \nabla_{E_a} \nabla_{E_a} \phi + \sum_{a,b} \theta_a \wedge i(E_b) R_{\nabla}(E_b, E_a) \phi.$$

Hence we have

$$\Delta_B \phi = -\sum_a \nabla_{E_a} \nabla_{E_a} \phi + \nabla_\tau \phi + \sum_{a,b} \theta_a \wedge i(E_b) R_\nabla(E_b, E_a) \phi + A_\tau \phi,$$

which prove (2.4). \Box

From the Proposition 2.2 and Theorem 2.3, we have the following theorem.

Theorem 2.4 Let (M, g_M, \mathcal{F}) be a compact Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with $\kappa \in \Omega^1_B(\mathcal{F})$. If F is non-negative, $\tilde{\Delta}$ -harmonic forms are parallel. If F is quasi-positive, then $Ker\tilde{\Delta} = \{0\}$.

On the other hand, it is well-known ([7]) that if $\pi(Y)$ is a transverse Killing field, i.e., $\theta(Y)g_Q = 0$ if and only if

$$\langle A_Y \phi, \psi \rangle_B + \langle \phi, A_Y \psi \rangle_B = 0 \quad \forall \phi, \ \psi \in \Omega^r_B(\mathcal{F}).$$
 (2.5)

From (2.5), if τ is a transverse Killing field, then for any $\phi \in \Omega_B^r(\mathcal{F})$

$$\langle A_\tau \phi, \phi \rangle_B = 0. \tag{2.6}$$

Hence we have from (2.3)

$$\langle \Delta \phi, \phi \rangle_B = \langle \Delta_B \phi, \phi \rangle_B \quad \forall \phi \in \Omega^r_B(\mathcal{F}).$$

By (2.4), if $\phi \in Ker\Delta_B$, then we have

$$0 = |\nabla_{tr}\phi|^2 + \langle F(\phi), \phi \rangle_B.$$

Hence we have the following theorem.

Theorem 2.5 Let (M, g_M, \mathcal{F}) be a compact Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with $\kappa \in \Omega^1_B(\mathcal{F})$. Assume that the tension field τ is a transverse Killing field. If F is quasipositive, then every basic harmonic r-forms is zero. i.e., $\mathcal{H}^r_B(\mathcal{F}) = 0$.

Remark. If \mathcal{F} is minimal, $\Delta_B = \tilde{\Delta}$.

Let ϕ be a basic 1-form and ϕ^{\sharp} its g_Q -dual. Then we have

$$\langle F(\phi), \phi \rangle = \sum_{a,b} \langle \theta^a \wedge i(E_b) R_{\nabla}(E_b, E_a) \phi, \phi \rangle$$

=
$$\sum_{a,b} i(E_b) R_{\nabla}(E_b, E_a) \phi \langle \theta^a, \phi \rangle$$

=
$$\sum_{a,b} g_Q(R_{\nabla}(E_b, E_a) \phi^{\sharp}, E_b) \langle \theta^a, \phi \rangle$$

=
$$\sum_{a} g_Q(R_{\nabla}(\phi^{\sharp}, E_a) E_a), \phi^{\sharp}) = g_Q(\rho_{\nabla}(\phi^{\sharp}), \phi^{*}),$$

where ρ_{∇} is the transversal Ricci curvature. From this equation, we have the following corollary.

Corollary 2.6 Under the same assumptions as in Theorem 2.5, If the transversal Ricci curvature is non-negative, then every basic harmonic 1-form is parallel. If the transversal Ricci curvature is quasi positive, then every basic harmonic 1-form is zero, i.e., $\mathcal{H}^1_B(\mathcal{F}) = 0$.

References

- J. A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194.
- [2] F. W. Kamber and Ph. Tondeur, De Rham-Hodge Theory for Riemannian Foliations, Math. Ann. 277(1987), 415-431
- [3] F. W. Kamber and Ph. Tondeur, *Harmonic foliations*, Proc. NSF conference on Harmonic maps, Springer Lecture Notes 949(1982),87-121
- [4] F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538
- [5] Ph. Tondeur and G. Toth, On transversal infinitesimal automorphisms for harmonic foliations, Geometriae Dedicata 24 (1987), 229-236
- [6] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New York - Berlin - London - Paris - Tokyo, 1988
- [7] S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990), 239-245

Department of Mathematics, Cheju National University, Jeju 690-756, Korea