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Abstract

Attention is drawn to a method of sampling a finite population of N units with
unequal probabilities and without replacement. The method was proposed by
Stern & Cover (1989) as a model for lotteries. The method can be characterized
as maximizing entropy given coverage probabilities =z, or equivalently as having
the probability of a selected sample proportional to the product of a set of
‘weights’ w,. We show the essential uniqueness of w, given the x, and describe
practical, geometrically convergent algorithms for computing the w, from the =x,.
We present two methods for stepwise selection of sampling units, “forward’ and
"backward’.

Inclusion probabilities of any order can be written explictly in closed form.
Second-order inclusion probabilities n, satisfy the condition 0< n3< #xr, and shown
the several properties of x, and =, which guarantees Yates & Grundy’s variance

estimator to be unbiased. definable for all samples and always nonnegative for
any sample size.

1. Introduction

Random sampling of n distinct units from a finite population of N units
without replacement may be called unequal probability sampling or weighed

sampling when the probabilities associated with (1;/) possible choices are

This paper was announced in Branch of Survey Sampling of the Korean
Statistical Society. on 16. Mar. 1996.
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not all equal. A problem is to define a particular weighted sampling scheme

subject to prespecification of the marginal probabilities x, that the sample

includes the ith population unit, where
0(71','(1 (i=1,2,"',N), ﬁ;n’,:n (1)

The randoem sample may be denoted by X where X=(X; X,-,X,) and

X~={ 1: 7th pop. unit is in the sample
! 0 : 7th pop. unit is not in the sample

Let
D'={x=(x;-,x,) : ;=0 or 1 and x;+-+x,=n)

Then random vector X takes values in D" and denoted the probability density
function of a sampling scheme by p(x) for any vector x€D" where
#x)>0 and Zpx)=1.

The associated probability that the sample includes 2th units is
7(;=E(X,')= xz‘_,u_x,-p(x), (2)

when the x, satisfy (1).

The particular family of sampling schemes that we propose can be defined in
any of three ways that we show to be equivalent.

Method 1. Pick any vector of weights. w=(w,--,wy), where w;>0 for i=1,-- N,

and define
px) o ﬁwf (3)

It is obvious that rescaling the w, by a positive constant multiplies
determines the same p(x) but that modulo rescaling the p(x) corresponding to
distinct = are distinct. It is less obvious that the coverage probabilities
determined by (2) are in one to one correspondence with the weights w, modulo

scaling, but we show that this correspondence is a direct consequence of

standard exponential family theory. If we put w,~=eo' then
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p(x)ocexp(g‘ﬁ,-x;) i 0=(6,-,6N

which makes exponential family connection .

Method 2. Pick any vector of coverage probabilities x=(m,,7y). where =,

satisfy (1) . and choose M x) subject to the constraints (2) to maximize the

entropy - (%) logp{x).
If a weight vector u or 6 can be determined such that Hx) defined by

Method 1 matches the 7 given for Method 2. then this Method 1 choice is the
unique maximum entropy scheme proposed as Method 2.

1972 : Dorroch & Ratcliff {3) : A more general form of this result is proved

1989 : Stern & Cover (12) : This model was first proposed for determined
optimal lottery strategies.

1990 : Joe (10) : further generalized

Method 3. Pick any vector of probabilities p=(p,--.px). where 0<{pi<{1 for
i=1,~-,N and define Z=(Z,--,Zy) to be independent Bernoulli trials with
probabilites 2,,--.pr. Then define the sampling distribution of X to be the

conditional distribution of 2 given 2.Z;=n.
It is evident that Method 3 gives the same sampling scheme as Method 1 if
and only if the w, are proportional to p/(1—2,).

Thus the base model for all three models described above is

p(x)=,ﬁwf/y§_(’ﬁ‘wf') oc exp(g&x,) xeD" (4)

where u. or equivalently &é. may be deternined by =z through (2). We refer to
(4) as the maximum entropy model.

2. Weights and coverage probabilities

The relation between ®u and # is a special case of that between natural and
mean-value parameterizations for an exponential family. The following result
can be proved by using Theorem 3.6 of Brown (1986, p74) (1)

Th 1. For any vector =z satisfying (1). there exists a vector u for the maximum

-3 -
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entropy model subject to the constraint (2). and w is unique up to rescaling.

To compute = from 7z, we recast (2) in the form of a set of equations (5)
below, and solve these iteratively as in (7). Throughout the paper we use the
following notation . S$={1,2,---,N}, capital lettess such as A, B or C for subset

of S. A°=S\A for the complement of A in S. and |A|l for the number of
elements of A. And we define

Rk C)= Bc,za-k( J;Lwi)

for any nonempty set CCS and 1<k<|(, R(0,C)=1 and R(kC)=0 for any
Riq.

The following Proposition 1 follows immediately from the definiton.

Propositon 1. For ‘any nonempty set CCS and 1<k<|(:

a) Z‘tw,-R(k—l,C\{i})=kR(k,C)
1€

b) 2 R(EC\ () =(CI-A - R C)
=

o3RG, OR(k=i, C) = R(k, C)
Using this notation, we may rewrite (2) as

= w‘R%;,g){i}c) . G=1,2.-N) | (5)

. — ’ C
By a) er,:Z w'R(};(nlé){l} ) =5, which is the result in (1).

Thus for fixed ». there are N—1 linearly independent relations among the N

relations of (5). Without loss of generality, we assume that 7 <m<--<m, and

let #xy=wy. then xy= wNR(Ig(;IS'\){M) by (5) ie. R(n,S=R(n—1,{N}°).

Hence we get

_ mR(n—1,{N}°) L —
YT R o YT AT D e ©
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Although a closed-form solution of (6) seems impossible, the equations can be
solved as a fixed-point problem by using an iterative procedure. Specially. the
following updating scheme provides a solution of (6):

(i=1, N—1), wV=wl=ry

Qv WROSLDY |
' R(n—1,{}) la=o®’
(7)

where w®=(w, wi", -, wi).

Th 2. Define W={w: 0 w;<n;, i=1,-,N—1,; wy=nry}. then
a) The set of equations in (6) has a unique solution. w'eW.
b) Starting from w® =1 the sequence (7) of vectors w'? (¢=1,2,---) converges

monotonically and geometrically to w® with a rate bounded by m,.

This procedure in (7) takes far fewer iterations to converge than
Deming-stephan(1940) (4].

Also this algorithm is more direct and much faster than the one proposed by
Sterm & Cover (1989) [12) which uses a generalized iterative scaling algorithm
of Darroch & Ratcliff (1972) (3).

Lemma 1. For any i,j€S, the following properties hold :
a) =1 w,=w,
b) mom e wow,

w; _7!'_,_
c) Ay e w0, > x;
d) If ¢, <m< ¢y, for all m; and some ¢, c;(0,1) = w,/w,— x;/x; as N/n— .
Proof
Take the ratio of the 1th equation and the jth equation of (5):
7 _ wR(n—1,{i}9 w,wR(n—2,{i, ) )+ w,R(n—1,{i./}°)

T " wRA—L U  wwiRn—2, 6N+ wR =1 G730 (8)

Then a) and b) can be direatly deduced from (8).
Since the right-hand side of (8) <wj/w, if and only if w,2w, c¢) is also

strightforward by the condition #,27, and a) and b). By manipulating the

equation in (8) for =, instead of x, and using c), we can show

- 5 -
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T Wi [Ai(N_ N_T
m < w) S{ 71'1(71 1)}/(" 7[]) (9)
As N/n—o, the right-hand side of (9) approches =/x,. Thus for any pair i#;,

we have wj/w;,—r/x, as N/n—oo.

3. Draw-by-draw selection procedures

We . discuss procedures for drawing a sample from the maximum entropy
model.
We consider draw-by draw selection procedures. on acount of the large

N . . . . .
number (n ) of choices where we draw one unit at a time until » units are

obtained.

We call a selection procedure 'forward’ if it selects # units from the
population as the sample, or 'backward’ if it removes N—n units from the
propulation and takes the remaining =z units as the sample. Then for any

xeD",

Kx) o ,g'wi o 2:!;'wi/ :l;lswi = ig;w,»_l

where A,={7; x;,=1}. it is obvious that for any ‘forward’ procedure. there is
corresponding ‘backward’ procedure, which relects unsampled units in the same

! instead of w, We also distinguish among procedures by whether

way using w;
or not a procedure requires #n fixed in advance. In the context of sample
surveys. the =, are usually prespecified. Thus the sample size 7 and the w,
are fixed in advance.

However. it is possible in some applications that the w, are prespecified and
different sample sizes are to be experimented with. In this case a selection
procedure that does not depend on » is desired.

The output of a draw-by draw procedure is represented by Ay A, - A, where
Ay=¢ and A,CS denotes the set of selected indices after % draws. The

following are two ‘forward’” procedures, one for fixed # and the other for

nonfixed n.
The ‘backward’ version of these procedures can be defined accordingly.

_6 -
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Procedure 1. (forward., = fixed). At the Ath draw (k=1,--,n). a unit j€Ad;_; is
selected with probability

wiR(n_k’A:—l\ {]})
(n—k+ D) R(n—k+1, A5,

Pl(j.A;—l) =

Using the relation w; o« p;/(1—p;). the function R can be written as
R(k,C)= P/ ;}CZ,.= 3] LL(H w,)

for any nonempty set CCS and 0<k<|{.
Thus P, has the interpretation

P(j,Ai_ )= n—_}e-l——l-P’ (Z;=1 | E;_ Z;=n—k+1)

where Z;-,Z) are independent Bernoulli trials as defined in Method 3 in
Section 1.

It is easy to see by (a) in Proposition 1 that Py(-,A;_;) is a probability
density on Aj_,. To see that a random sample of 7 units selected by Procedure
1 is a sample from the maximum entropy model. we first compute the
probability of choosing an ordered set of indices i ---,7, using Procedure 1. where

in this case A,= {7, ---.i,} for k=1, n:

_ w;, R(n—k,A})
T (n—k+1) - R(n—k+1,A5.))

1:I =1"P\(4,, As-1)

R(0,A})
=i (Mw) “Roirg = PAXmL=AD
Since there are n! different ways of the ordering the indices i, --,i,. the
probability of obtaining the units ¢, --,7, without regard to order is exactly
P(X,=1,teA,).
Suppose that =,.., is the Ath-order inclusion probability for the units 7,1

to be in a sample of size » from the maximum entropy model. Then a property
of Procedure 1 is that
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P (Ay=1{i ,iy}) ll:Ilwi, R(n_z'({nil:é;'ik}c) =T, (10)

Although P, can be calculated directly from R functions, the computation can

be much simplified by noticing that P;(j,Aj)=n;/n and using the following

formula recursively for the consecutive draws.

Lemma 2. For any 1<k<n—1 and jeA;,

w,—,Pl(]',A;—l) - ijI(ik»A;—l)
(n— R (w;,— w) Py(i, As-1)

P\(j, AL = (11)

Procedure 1 can be realized using the following algorithm, which requires

O(nN) operations,
1) For j=1,2,*,N, calculates P\(4,S). which is given by x;/n. Then draw unit

t) according to the probability P,(7, S)

2) If n>1, then Ay—¢. A« {7}, &2, go to 3 ) : otherwise stop.

3) For all jeAji_i. calculate P\(;,Ai-)) from P,(j,A5_;) and P,(i-;, AL ,)
using (11). Then draw unit ¢, according to the probability P,(i,, Aj_,).

4) If k<{n, then A< A, U{i,), k—k+1, go to 3 : otherwise stop.

Procedure 2 ( forward, » nonfixed }. At the kth draw (k=1,---,#), a unit
jeAj-, is selected with probability

Py(j, A y) = g i RA }’kA—‘zS}?E/:.J?) A A (12)

By a) and c¢) in Proposition 1.

R(G,A-))

2 PUARD = H G sres |3 wRECiSLALNGD)
S RG,A-) , o
= T DR R~ DR(E=i,Af)) =1

Thus P,(-,A%-,) is a probability density on Aj-.,. Now we show by induction
that a random sample seledcted by Procedure 2 is a sample from the maximum
entropy model.
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Let 7; be a random index of the unit selected at the kth draw. Assuming

P(A, =A)=R(k—1,A)/R(k—1,5)

for any ACS with |A|=k—1. which is true for k=2 by the definition of P, we
show that PJ{A,=B)=R(k,B)/R(k,S) for any BCS with |Bl=K. By b) and c¢) in

Proposition 1,

P{A,=B) = ;P,(Ak_l =B\ {WPAry=jlAs-1 =B\ U}

_ R(k—l.B\{jD{ < w;R(k—i—l.B")R(i,B\{i})}
s R(k—1,5) | £ (k— ) R(k, S)

— kB N R(k_ '_l.BC) ) .
— R S AL & BRGENID)
—_ ng,B! < R(k— /—1.B°) 3 )

T R(kS) < (k—z')liz’(k—l,S)(k )R, B)

_ _R(kB)
R(k,S)

By induction. the probability of obtaining a set A, is

R(n,A,)/R(n,s)=P(X,=1,teA,)

It is evident from the proof above that using Procedure 2

P(A,= {il,"',ik}) &< I:[lwi,

Thus Procedure 2 does not depend on n. The two procedures have different uses.
By using (12). Procedure 1 requires less operations than Procedure 2, but cannot
be used when 7 is nonfixed. Procedure 2 is useful for doing rotations in survey
sampling.

The preference between forword and backward procedures depends on the scale of
n. Forward procedures are preferred when n<N/2 while backward procedures are
preferred when n>N/2.

When the w, all are equal, both procedures reduce to simple random sampling

without replacement.
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4. Application to Survey Sampling

The goal of weighted sampling is typically to estimate the population total
Y= Zy, for a finite population of N units.

An associated estimator of Y :
- i
=2 . X
where X=(X; X,,Xy) : a random sample of n units from the population.
The variance of Pis :

Mh=RiTy 4 g 3 T, (13)

1<1<<N T

where x; is the second-order inclusion probability for both the units 7,7 to be

in the sample.

When n is fixed, an alternative expression is :

Y= ISZ: (mim;— (y'—zi)z. (14)

Ty iy
If nz#o0 for all pairs i#; and = is fixed,
the estimator of W(Y):

g (vi_ i\
U r A
(= 7 " = ( ”i)X,X, (15)

T

property 1. The inclusion probabilities of any order are uniquely determined

by the x, and can be expressed in closed form. i.e.

;= ww;R(n—2,{i,7}) [R(n,S). (16)
In general. the Ath-order (1<A<n) inclusion probability for the units 4, -,i; to

be in the sample is

T = l:l,w,-,)- Rin 4, .09 (17

R(n,S)

_10_



Uneqgual probability Sampling and Maximum Entropy

property 2. For the maximum entropy model, 0<{xy;{mx, for any pair i#;.

property 3. 1 « y;& W P)=0¢ o(P)=0 for all possible samples.

property 4. g"zr,:n, gn,;=(n—l)7r,~, ﬁgni,:%n(n—l).

Example 1.

Let N=100. A vector « is generated uniformly from the simplex.
{m= (7, M) : 0<x<],i=1,--,100 : 2m;="50}

i) w° correponding to #* = is found from (6) via (7)

ii) This particular w'= is used as the weights for 5 different maximum
entropy models with sample size n= 2, 5, 15, 30, 50 respectively

iii) The coverage probabilities z for each of five models = are obtained by (5)
iv) Each of five n's = is converted to a « by (7) then u should be the
same as w' up to a scalar.

(0

v) We use max |w!?/w;—1/<0.01 as the stopping rule, where w'?

is the value

of u at step t and w= w'zy/w) is the fixed point.

Table 1. Number of iterations for computing % from 7z and the range of u

and n for sample size 2=2,5,15,30,50

Number of

iterations 100 @00) n Wy wy/m
2 3 0.2634 5.350x10 "% 4.651x10 "% 0.8736
5 4 0.4576 1.489%10 "¢  9.026x10 ~S 0.5938
15 10 0.7730 6.201x10 "%  1.547x10 ¢ 0.2301
30 20 0.9165 2.020x10 "% 1.813x10 ¢ 0.08851
50 16 0.9903 7.627x10 3 1.947x10 ~* 0.02553

Example 2 Let consider PPS (prob. proportional to size).

S={U;li=1,2,,N}

X

i

—’P(Ux)': pz

x|
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where M;=|U;| = size of U, unit and M= ﬁ;M, }

We put N=4, n=2 and p,-=% is

Unit U, 1 2 3 4

relative size b, 0.1 0.2 0.3 0.4

Table 2. PPS (N=4, n=2)
Sample(S) UlU, pps wor 1 2 3 4

1 1.2 pipa 0.022  0.022

2 1.3 b1 ban 0.034 0.034

3 1.4 p-ban 0.044 0.044
4 2.1 b2 P12 0.025 0.025

5 23 P2 ban 0.075  0.075

6 2.4 D2 D 0.100 0.100
7 3.1 b3-bus 0.043 0.043

8 3.2 b3 bas 0.086  0.086

9 3.4 b3 Pas 0.171 0.171
10 4.1 byt bwa 0.067 0.067
11 4.2 Py b 0.133 0.133
12 4.3 by Pan 0.200 0.200

7T, 0.235 0.441 0.609 0.715 2r,=2

Then x, are 0.235, 0.441, 0.609 and 0.715 respectively. The corresponding w,

found from (6) by maximum entropy model are 0.14727, 0.30939, 0.49508 and
0.715, respectively.

We use max |w?/w® P —1/<0.001 where w'” is the value of % at step t and
it needs 9 steps iterations to compute « from =x.

The second-order inclusion properties =z, are given in table 3 by (16).

- 12 -
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Table 3. Second-order inclusion properties =,

i i=2 j=3 j=4

1 0.04785 0.07658 0.11058
2 0.16087 0.23233
3 0.37178

We can certify that mi2=pi-pzin+pz° p12=0.022+0.025=0.047 in tables 2 by

calculator is same as 72=0.04785 in table 3 by computer program for 7=1,7=2 as

an example.

Also we can find that ggni,:l and g;ﬁg=ﬂ'|2+7f13+7(14=0.23491=7ﬁ

=(n—1)nx, for i=1 in table 3, which are property 4.

It means that the distribution of maximum entropy model can be applied

usefully for the sampling distribution of large sample sizes.

Appendix

( Program for Example 2 )

proc iml:

reset print:

p=1{ 0.235, 0.441, 0.609, 0.715 }:
w=p:

[I={0111,1011,1101,1110}:

k=J4, 1. 1):

gq=w(l: 3, J:
s=q(+. )
d=w*diag(s):
n=w"i
w=d/n':
oldw=w:
count=1:

print count, w:

do until (abs(m)<0.001):
oldw=w:
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q=w(1:3. ):
s=q(+. ):
d=p*diag(s):
n=w"i
w=d/n".
a=w/oldw-k:
a=a(l1:3. ):
m=al{). ):
count=count+1:
print count. w:
end:

quit:
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