J. of Basic Sciences, Cheju Nat. Univ. 8(1), 33~37, 1995. 기초과학연구 제주대학교 8(1), 33~37, 1995.

EXISTENCE OF THE TRANSVERSE SPIN STRUCTURE ON FOLIATED RIEMANNIAN MANIFOLD

SEOUNG DAL JUNG

ABSTRACT. We prove that a transversally oriented Riemannian foliation M admits a transverse spin structure if and only if the second Stiefel-Whitney class on the normal bundle is trivial

1. Introduction

A spin structure on any vector bundle E over a Riemannian manifold Mis one of the important structures. Its existence is expressed by characteristic class $\omega_2(E) \in H^2(M; \mathbb{Z}_2)$, called the second Stiefel-Whitney class of E; unlike the Euler, Chern, and Pontrjagin characteristic class, the Stiefel-Whitney classes of E are not de-Rham cohomology classes of M, and hence are not represented in terms of the curvature operator of a connection in E. As an example of the sort of information carried by the Stiefel-Whitney classes, a vector bundle E is orientable if and only if $\omega_1(E) \in H^1(M; \mathbb{Z}_2)$ is trivial ([Mi]) and an oriented Riemannian vector bundle E over M admits a spin structure if and only if $\omega_2(E) \in H^2(M; \mathbb{Z}_2)$ is trivial ([BH]).

In this paper, we prove that a transversally oriented Riemannian foliation M admits a transverse spin structure if and only if $\omega_2(Q)$ is trivial. The proof is similar to the case of Riemannian manifold.

2. Preliminaries

Let (M, g_M, \mathcal{F}) be an n(= p + q) dimensional Riemannian manifold with the bundle-like metric g_M and foliation \mathcal{F} with codimension q. Let Q =

33

Partially supported by TGRC-KOSEF.

TM/L be the normal bundle of \mathcal{F} , where L is an integrable subbundle of TM which defining the foliation \mathcal{F} . Let Cl(q) be the Clifford algebra of R^q with the standard inner product. Put

$$Pin(q) = \{ \tilde{g} \in Cl(q) \mid \tilde{g} = u_1 \cdots u_r, \quad |u_j| = 1 \},$$

$$Spin(q) = \{ \tilde{g} \in Pin(q) \mid \tilde{g} = u_1 \cdots u_{2r} \},$$

where " \cdot " denotes the Clifford multiplication. These are called the *Pin group* and *Spin group* respectively. It is well known that Pin(q) and Spin(q) are Lie groups([LM]). We define a homomorphism $\tau : Pin(q) \longrightarrow GL(R^q)$ by, for $\tilde{g} \in Pin(q)$ and $u \in R^q$,

$$\tau(\tilde{g})u = \tilde{g} \cdot u \cdot \tilde{g}^{t},$$

where $\tilde{g}^{t} = u_{j} \cdots u_{1}$ for $\tilde{g} = u_{1} \cdots u_{j}$.

Then there is an exact sequence

$$(2.1) 0 \longrightarrow Z_2 \longrightarrow Spin(q) \xrightarrow{\tau_0} SO(q) \longrightarrow 0,$$

where $\tau_0 = \tau|_{Spin(q)}$. It is well known that Spin(q)(q > 2) is simply connected and the universal cover of SO(q)([G],[LM]). Let $\pi: P_{SO}(Q) \longrightarrow M$ be the foliated principal SO(q)-bundle of (oriented) transverse orthonormal frames. Note that if M is transversally orientable, then choosing an orientation on Q is equivalent to choosing a foliated principal SO(q)-bundle $P_{SO}(Q) \subset P_O(Q)$. This embedding is, of course, compatible with the action of $SO(q) \subset O(q)$. Having thereby made the structure group of Q oconnected, one might ask whether it is possible to make the structure group simply connected. This leads us to the concept of a transverse spin structure.

Definition. Suppose $q \geq 3$. Then a transverse spin structure on foliated Riemannian manifold M is a foliated principal Spin(q)-bundle $P_{Spin}(Q)$ together with a 2-sheeted covering

(2.2)
$$\xi : P_{Spin}(Q) \longrightarrow P_{SO}(Q)$$

such that $\xi(p \cdot \tilde{g}) = \xi(p) \cdot \tau_0(\tilde{g})$ for all $p \in P_{spin}(Q)$ and all $\tilde{g} \in Spin(q)$. When q = 2, a transverse spin structure on M is defined analogously, with Spin(q) replaced by SO(2) and $\tau_0 : SO(2) \longrightarrow SO(2)$ the connected 2-fold covering.

When q = 1, $P_{SO}(Q) \cong M$ and a transverse spin structure is simply defined to be a 2-fold covering of M.

Let $\{U_{\alpha}\}$ be a distinguished open cover of M so $P_{SO}(Q)$ is local trivial over U_{α} and let s_{α} be a local transverse orthonormal frames over U_{α} . On the overlap, we express $s_{\alpha} = g_{\alpha\beta}s_{\alpha}$, where $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \longrightarrow SO(q)$ is basic (that is, locally constant along the leaves). These satisfy the cocycle condition:

$$g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = I \quad \text{and} \quad g_{\alpha\alpha} = I.$$

Since the foliated principal bundle $P_{SO}(Q)$ of (oriented) transverse orthonormal frames has transition functions $g_{\alpha\beta}$ acting on SO(q) from the left, a transverse spin structure on M can be considered as lifting of the transition functions to Spin(q) preserving the cocycle condition. Hence the existence of the transverse spin structure on M is equivalent to the existence of the lifting $\tilde{g}_{\alpha\beta}$ of $g_{\alpha\beta}$ satisfying the cocycle condition. That is,

(2.3)
$$\tau_0(\tilde{g}_{\alpha\beta}) = g_{\alpha\beta}, \ \tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha} = I \quad \text{and} \quad \tilde{g}_{\alpha\alpha} = I.$$

To do our work, we introduce a Čech-cohomology theory. Now we fix $\{U_{\alpha}\}$ a distinguished simple cover of (M, g_M, \mathcal{F}) and let Z_2 be the multiplicative group $\{-1, 1\}$. A transverse Čech j-cochain is a basic function $f: U_{\alpha_0} \cap \cdots \cap U_{\alpha_j} \longrightarrow Z_2$ defined for (j+1)-tuples of indices on $U_{\alpha_0} \cap \cdots \cap U_{\alpha_j} \neq \phi$, which is totally symmetric, that is,

$$f(\alpha_{\sigma(0)}, \cdots, \alpha_{\sigma(j)}) = f(\alpha_0, \cdots, \alpha_j)$$

for any permutation σ . If $C_{tr}^{j}(M, Z_{2})$ denotes the multiplicative group of all the transversal Čech *j*-cochains, the coboundary $\delta : C_{tr}^{j}(M, Z_{2}) \longrightarrow C_{tr}^{j+1}(M, Z_{2})$ is defined by:

(2.4)
$$(\delta f)(\alpha_0, \cdots, \alpha_{j+1}) = \prod_{i=0}^{j+1} f(\alpha_0, \cdots, \hat{\alpha}_i, \cdots, \alpha_{j+1}).$$

The multiplicative identity of $C_{tr}^{j}(M, Z_{2})$ is the function 1 and clearly $\delta^{2} f = 1$. Hence we can define a cohomology group $H_{tr}^{j}(M; Z_{2}) = Ker \, \delta/Im \, \delta$ which are independent of the particular distinguished simple cover chosen. This is called the *j*-th transversal Čech cohomology group.

3. Main results

Consider the vector bundle $Q = TM/L \longrightarrow M$, not necessarily orientable. Let s_{α} be a transverse orthonormal frame on Q over U_{α} . On $U_{\alpha} \cap U_{\beta} \neq \phi$, $s_{\alpha} = g_{\alpha\beta}s_{\beta}$, where $g_{\alpha\beta}$ is the transition functions. Now, we define a 1-cochain f as

(3.1)
$$f(\alpha,\beta) = det(g_{\alpha\beta}) = \pm 1.$$

This is well-defined since $U_{\alpha} \cap U_{\beta}$ is contractible and hence connected. Since $f(\alpha, \beta) = f(\beta, \alpha)$, this defines an element of $C_{tr}^1(M, Z_2)$. If the transition functions $g_{\alpha\beta}$ satisfy the cocycle condition, then from (3.1),

(3.2)
$$(\delta f)(\alpha,\beta,\gamma) = f(\beta,\gamma)f(\alpha,\gamma)f(\alpha,\beta) = det(g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}) = 1.$$

Hence f defines an element of $H_{tr}^1(M; \mathbb{Z}_2)$. If we replace s_{α} by $s'_{\alpha} = h_{\alpha}s_{\alpha}$, the new transition functions become $g'_{\alpha\beta} = h_{\alpha}g_{\alpha\beta}h_{\beta}^{-1}$. If $f_0(\alpha) = det(h_{\alpha})$, then

(3.3)
$$f'(\alpha,\beta) = det(g'_{\alpha\beta}) = det(h_{\alpha})det(g_{\alpha\beta})det(h_{\beta}) = ((\delta f_0)f)(\alpha,\beta).$$

This proves that the element in cohomology defined by f is independent of the particular frame chosen and we will denote this by $[f] \equiv \omega_1(Q) \in$ $H_{tr}^1(M; \mathbb{Z}_2)$, called the first Stiefel-Whitney class. Hence if M is transversally orientable, we can choose a transverse frames such that $det(g_{\alpha\beta}) = 1$. This implies that $\omega_1(Q)$ is trivial. Conversely, if $\omega_1(Q)$ is trivial, then $f = \delta f_0$ for some $f_0 \in C_{tr}^0(M, \mathbb{Z}_2)$. If we choose h_{α} with $det(h_{\alpha}) = f_0(\alpha)$, then the new frames $s'_{\alpha} = h_{\alpha} s_{\alpha}$ will have transition functions $g'_{\alpha\beta}$ with $det(g'_{\alpha\beta}) = 1$ and define an orientation of Q. Hence we have

Theorem 3.1. Let (M, g_M, \mathcal{F}) be the Riemannian foliation of codimension q with bundle-like metric g_M . Then M is a transversally orientable if and only if $\omega_1(Q) \in H^1_{tr}(M; \mathbb{Z}_2)$, is trivial.

Now, let (M, g_M, \mathcal{F}) be the transversally oriented Riemannian manifold with bundle-like metric g_M and foliation \mathcal{F} with codimension q and let $g_{\alpha\beta} \in$ SO(q) the transition functions of $P_{SO}(Q)$. We choose any lifting $\tilde{g}_{\alpha\beta}$ to $\operatorname{Spin}(q)$ by τ_0 in (2.1) such that

(3.4)
$$au_0(\tilde{g}_{\alpha\beta}) = g_{\alpha\beta} \quad \text{and} \quad \tilde{g}_{\alpha\beta}\tilde{g}_{\beta\alpha} = I.$$

Since the U_{α} is contractible, such lifts always exist. Since $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = I$, $\tau_0(\tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha}) = I$. Hence $\tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha} = \pm I$. Now, define the transverse 2-cochain f as

(3.5)
$$f(\alpha,\beta,\gamma)I = \tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha}.$$

Clearly $f(\alpha, \beta, \gamma) \in Z_2$. Furthermore, f is symmetric and $\delta f = 1$. Hence if we change the choice of the transverse frame s_{α} or change the choice of lifts, then f changes by a coboundary. This implies f defines an element in $H^2_{tr}(M; Z_2)$, which is independent of the choices made. We will denote this by $[f] \equiv \omega_2(Q) \in H^2_{tr}(M; Z_2)$, called the *second Stiefel-Whitney class*. Since from (3.5), M admits a transverse spin structure if and only if we can choose the lifting such that $f(\alpha, \beta, \gamma) = 1$, we have

Theorem 3.2. Let (M, g_M, \mathcal{F}) be the transversally oriented Riemannian foliation with codimension q and with bundle-like metric g_M . Then M admits a transverse spin structure if and only if $\omega_2(Q) \in H^2_{tr}(M; \mathbb{Z}_2)$ is trivial.

REFERENCES

- [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces II, Amer. J. Math. 81 (1959), 315-382.
- [G] P. B. Gilkey, Invariance Theory, The Heat Equation, And the Atiyah-Singer index Theorems, Math. Lecture Series II, Publish or Perish, Inc., 1984.
- [KT] F. W. Kamber and Ph. Tondeur, Foliated Bundles and Characteristic Classes, Lecture Note in Math., 493, Springer-Verlag, 1975.
- [LM] H. B. Lawson, Jr. and M. L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, New Jersey, 1989.
- [Mi] J. Milnor, Topology from the Differentiable Viewpoint, University press of Virginia, Charlottesville, Va., 1965.
- [Mo] P. Molino, Riemannian Foliations, Birkhäuser, Boston, Basel, 1988.

DEPARTMENT OF MATHEMATICS CHEJU NATIONAL UNIVERSITY CHEJU, 690-756, KOREA