On Some Properties of B_1 -Proximity

Bang Eun-sook

B1-Proximity의 몇가지 성질에 關하여

方銀淑

Introduction

The theory of proximity spaces was essentially discovered in 1950 by Efemovič when he axiomatically characterized the proximity relation "A is near B", which is denoted by $A\delta B$, for subsets A and B of a set X. Effemovič's axioms for this nearness relation δ are as follows:

(E1) $A \delta B$ implies $B \delta A$.

(E2) $A \delta(B \bigcup C)$ if and only if $A \delta B$ or $A \delta C$. C.

(E3) A&B implies A≠∮

(E4) $A \cap B \neq \phi$ implies $A \otimes B$.

(E5) $A\bar{\delta}B$ implies there exists a subset E such that $A\bar{\delta}E$ and $(X-E)\bar{\delta}B(\bar{\delta}$ means the negation of δ).

A binary relation δ satisfying axioms (E1)-

(E5) on the power set of X is called the *Efremovič's proximity* on X.

Hayashi introduced the notion of 'paraproximity' by replacing the word 'finite' by 'arbitrary' and thereby strengthening Efremovičs's 'union' axim to read: for an arbitrary index set I. A $\delta(\bigcup_{i \in I} B_i)$ iff A δB_i for some $i \in I$. (Hayashi, E., 1964).

A binary realtion δ between X and subsets of X is called the *K*-proximity on X if δ satisfies the following: (Kim. et al. 1973)

- (K1) $x \delta A \bigcup B$ iff $x \delta A$ or $x \delta B$
- (K2) $x \bar{\delta} \phi$ for all $x \in X$.
- (K3) $x \in A$ implies $x \delta A$.

(K4) $x \bar{\delta} A$ implies there is a subset E such that $x \bar{\delta} E$ and $y \bar{\delta} A$ for all $y \epsilon X - E$.

In this note we neglect the axiom (K4) and replace (K1) by a stronger axiom, which we call

理工大學 助教授

a "B₁-proximity" and examine some of its properties.

I. B₀-Proximity and B₁-Proximity

1.1. Definition. Let ξ be a relation between a set X and its power set PX. Consider the following axioms:

(A0) $x \notin (A \cup B)$ if and only if $x \notin A$ or $x \notin B$.

(A1) For any non-void index set I, $A \notin \bigcup_{i \notin I} B_i$ if and only if there exists an index $j \notin I$ such that $A \notin B_i$.

(A2) $x \overline{\xi} \neq for all x \in X$ ($\overline{\xi}$ means the negation of ξ).

(A3) x ∈ A implies x ∉ A

 ξ is called a B₀-proximity on X iff ξ satisfies (A0), (A2) and (A3). ξ is called a B₁-proximity on X iff ξ satisfies (A1), (A2) and (A3).

In such a case, (X, ξ) is called a $(B_0 - proximity, B_1 - proximity)$ space iff ξ is a $(B_0 - proximity, B_1 - proximity, resp.)$ on X.

1.2. Remark. Every K-proximity on X is also a B₀-proximity on X.

1.3. Definition. Let (X, ξ_1) and (Y, ξ_2) be two B_0 -proximity spaces (or B_1 -proximity spaces). A function $f: X \rightarrow Y$ is said to be a proximal map iff $x \xi_1 A$ implies $f(x) \xi_2 f(A)$. The category of B_0 -proximity spaces and proximal maps is denoted by $\underline{B_0 - Prox}$. Its full subcategory whose objects are the B_1 -proximity spaces is denoted by B_1 -Prox.

1.4. Proposition. Let (X, ξ) be a B_1 -proximity space. Define an operator α on the power set PX by $\alpha A = |x : x \xi A|$. Then α satisfies following properties:

(1)
$$\alpha \phi = \phi$$
.

- (2) $A \subset \alpha A$ for each $A \subset X$.
- (3) $\alpha (A \cup B) = \alpha A \cup \alpha B$.

(4) $A \subseteq B$ implies $\alpha A \subseteq \alpha B$.

Proof. (1) It follows from (A2).

(2) By (A3), if $x \in A$ then $x \notin A$ or $x \in \alpha A$. Therefore $A \subset \alpha A$.

(3) It is clear from (A1).

(4) If $x \in \alpha A$, the $x \notin A$ iff $x \notin B$ by (Al).

1.5. Remark. Since the operator α dosen't satisfy $\alpha \alpha A = \alpha A$ for each A $\subset X$, α is not a Kuratowski's closure operator.

1.6. Proposition. Let (X, ξ) be a B_1 -proximity space. Then there exists a topology $\tau(\xi)$ on X such that each closed set in $\tau(\xi)$ is precisely the fixed set under the operator α .

Proof. Consider a family F = |A: a A = A| of subsets of X.

i) By (1), (2) in 1.4, we have $\oint \in F$, $X \in F$. resp. ii) Let $|A_i : i \in I|$ be an arbitrary collection of members of F. If $x \notin \bigcap_{i \in I} A_i$ then $x \notin A_i$ for each $i \in I$, and so $x \in \alpha A_i = A_i$ for each $i \in I$. Hence $x \in \bigcap_i A_i$.

iii) Let A. B be elements of F. Then from (3) in 1.4, AUB ϵ F. Therefore the family $|X-A : \alpha A = A|$ forms a topolgy $\tau(\xi)$ on X.

1.7. Propersition. In a B_1 -proximity space (X, ξ), the following statements are equivalent: (1) $x \xi A$.

- (2) $x \notin |y|$ for some $y \notin A$.
- (3) $|\mathbf{x}| \bigcap \alpha \mathbf{A} \neq \phi$

Proof. (1) \Rightarrow (2). Since $x \notin A$, i.e. $x \notin \bigcup_{i \in A} \{y\}$, from (A1), there is $y \notin A$ with $x \notin \{y\}$.

(2) \Rightarrow (3). If $x \notin |y|$, then $x \in \alpha |y|$ or $x \in \alpha A$, and so |x| () $\alpha A \neq \phi$.

 $(3) \Rightarrow (1)$. It is clear.

1.8. Theorem. Let (X, ξ) be a B_1 -proximity

96

space. Suppose that ξ satisfies the following condition: $x \xi |y|$ implies $y \xi |x|$. Then the followings are equivalent:

- (1) x *ξ* A.
- (2) $x \notin |y|$ for some $y \notin A$.
- (3) $|\mathbf{x}| \cap \alpha \mathbf{A} \neq \phi$.
- (4) $\alpha |\mathbf{x}| \cap \mathbf{A} \neq \phi$.

Proof. It is suffice to show that (3) iff (4). Since $|x| \cap \alpha A \neq \phi$, $x \in \alpha A$ or $x \notin A$, so $x \notin |y|$ for some $y \in A$. But $x \notin |y|$ implies $y \notin |x|$, hence $y \in \alpha |x| \cap A$; $\alpha |x| \cap A \neq \phi$. Suppose that $\alpha |x| \cap A \neq \phi$. Then there is $y \in X$ such that $y \in$ $\alpha |x| \cap A$. That is $y \in \alpha |x|$ and $y \in A$. Therefore $x \in \alpha |y|$ and $\alpha |y| \subset \alpha A$. This implies $|x| \cap \alpha A \neq \phi$.

II. Main Results

The following theorem is an analogous concept in (Kong, 1980).

2.1 Theorem. $\underline{B_1 - Prox}$ is a bicoreflective subcategory of $\underline{B_0 - Prox}$.

Proof. Take any object (X, ξ) in <u>B₀-Prox</u>. Define the relation ξ_1 on the power set of X as follows: $x \xi_1 A$ if and only if there is $y \in A$ such that $x \xi_1 y$. Then it is clear that ξ_1 satisfies the axiom (A2) and (A3). For any non-void index set I, spppose $x \xi_1 \bigcup_{i \in I} A_i$.

Then there is $y \in \bigcup_{i \in I} A_i$ with $x \notin \{y\}$. This imlies $x \notin_1 A_j$ for $y \in A_j$. Conversely, if $x \notin_1 A_j$ for some $j \in I$, it is obvious that $x \notin_1 \bigcup_{i \in I} A_i$. Thus (X. \notin_1) $\in B_1 - Prox.$

Let $l_x : (X, \xi_1) \rightarrow (X, \xi)$ be the identity map. Then by the definition of ξ_1 it is clear that l_x is a proximal map. Take any object $(Y, \xi') \in \underline{B_1 - Prox}$ and take any proximal map $f : (Y, \xi') \rightarrow (X, \xi)$. It remains to show $f : (Y, \xi') \rightarrow (X, \xi_1)$ is a proximal map. Suppose that $x \notin A$. Then by 1.7, there is $y \notin A$ with $x \notin |y|$, so that $f(x) \notin$ |f(y)| and $f(y) \notin f(A)$. Thus $f(x) \notin f(A)$. This completes the proof.

2.2. Corollary. (Herrlich & Strecker. 1973) <u> B_1 -Prox</u> is coproductive and cohereditary in <u> B_0 -Prox</u>.

2.3. Definition. (Naimpally & Warrack. 1971) A subset A of a B_1 -proximity space (X, ξ) is a ξ -neighborhod of a point x in X (in symbols x (A) iff $x \bar{\xi} (X-A)$.

2.4. Proposition. Given a B_1 -proximity (X, ξ) the relation ζ satisfies the following properties:

- (1) $x \langle X$ for every x in X.
- (2) $x \langle A \text{ implies } x \in A \rangle$.
- (3) If $x(A \text{ and } A \subseteq B \text{ then } x(B)$.
- (4) If $\mathbf{x}(\mathbf{A}_i \text{ for } i=1,2,\cdots,n \text{ iff } \mathbf{x}(\mathbf{O},\mathbf{A}_i)$

(5) For any index set I, $x(\bigcup_{i=1}^{U}A_i)$ iff $x(A_i)$ for every $i \in I$.

(6) If x (A then $|x| \subset A \subset a A$.

Proof. (1) Since $x \overline{\xi} \neq x \langle X$. (2) Since $x \langle A, x \overline{\xi} \langle X-A \rangle$, which implies $x \not\in (X-A)$, so $x \in A$. (3) If ACB, then X-BCX-A. Thus $x \langle A$ im-

plies x $\overline{\xi}(X-B)$ or x(B.

(4) For any i=1,2..., n, x €(X-A_i) iff x € ↓
(X-A_i) iff x € (X-Â_i) iff x (A_i) iff x (A_i)
(5) For any index set I, x (U A_i)
(6) For any index set I, x (U A_i)
(7) iff x € (X-A_i)
(8) iff x € (X-A_i)
(9) iff x € (X-A_i)
(10) iff x € (X-A_i)
(11) iff x € (X-A_i)
(12) iff x € (X-A_i)
(13) iff x € (X-A_i)
(14) iff x € (X-A_i)
(15) iff x € (X-A_i)
(16) x € (A_i for every i € I
(17) x € (A_i for every i € I

(6) From (2), $x(A \text{ implies } x \notin A$. Therefore $x \notin \alpha A$.

2.5. Theorem. If (is a binary relation between X and PX satisfying the properties (1)-(5) in

the proposition 2.4 and $\boldsymbol{\xi}$ is defined by $x \, \bar{\boldsymbol{\xi}} A$ iff $x \langle X - A$, then $\boldsymbol{\xi}$ is a B_1 -proximity on X. A is a $\boldsymbol{\xi}$ -neighborhol of x iff $x \langle A$.

Proof. (A1) For any non-void index set I. $x \bar{\xi}$ A, for each $i \in I$ iff x(X-A), for each $i \in I$ iff x $(\bigcap_{i}(X-A_{i}))$ iff $x \bar{\xi} \bigcup_{i=1}^{U} A_{i}$.

(A2) If $x \in X$ the x(X) which implies $x \notin \phi$. (A3) If $x \notin A$ the x(X-A) so $x \in X-A$ or $x \notin A$.

2.6. Lemma. Let (X, ξ) be a B_1 -poximity space. Then the followings are equivalent:

(1) $x \langle A \text{ implies there exists a subset } B \text{ of } X$ such that $x \langle B \text{ and } y \langle A \text{ for every } y \text{ in } B$. (2) If $x \overline{\xi} A$ then there exists a subset E of X such that $x \langle E \text{ and } y \overline{\xi} A \text{ for every } y \text{ in } E$.

Proof. It is immediate from 2.3.

The condition in 2.6 will ensure that α is a

topological closure operator

2.7. Theorem. If a B_1 -proximity space (X. ξ) satisfies the condition in 2.6, the operator α is a topological closure operator.

Proof. By Proposition 1.6, it remains to show that $\alpha \alpha A = \alpha A$ for each ACX. To do so, we must show that $\alpha \alpha A \subset \alpha A$. Suppose that $x \not\in \alpha$ A. Then we have $x \in A$. i.e. x(X-A). Thus there exists a set ECX such that $x(E \text{ and } y \notin A \text{ for}$ every $y \in E$. From 2.4(2) and 1.4(2), $X \in E$ and $y \notin X - \alpha A$. Therefore $x \in E \subset X - \alpha A \subset X - A$. Consequently $x \notin \alpha \alpha A$, that is $x \not\in \alpha \alpha A$.

2.8. Remark. The operator α is the closure operator of the topology that it induces: the closed sets are precisely the set of the form αA for each ACTX

Literature Cited

- Herrlich H. & G. E. Strecker. 1973. Category Theory. p. 275-284. Allyn Bacon, Boston.
- Hayashi, E., 1964. On some properties of a proximity. J. Math. Soc. Japan 16: 375-378,
 Kim C. Y., Choi K. N. and Shin Y. S., 1973. On the K-proximities. Kyungpook Math. J. Vol. 13: 21-31.
- Kong J. E., 1980. On some properties of the nearness structues. Doct. Diss. Yonsei Univ.; 1-10.
- Naimpally S. A. and B. D. Warrack, 1971. Proximity spaces. p. 1-60 & 105-115, Cambridge Univ. Press. London.

國文抄錄

본 논문에서는 Kim C. Y.가 소개한 K-Proximity 공간의 공리를 수정하여, 좀 더 일반화된 Proximity인 B1-Proximity를 정의하여 이것에 관한 몇 가지 성질들을 조사하였다.

98