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STOCHASTIC DIFFERENTIAL INCLUSION
ON FINITE DIMENSIONAL SPACE
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ABSTRACT. For the stochastic differential inclusion of the form dX; € o(¢, X¢)dB: +
b(t, X¢)dt, where o,b are set-valued maps, B is a standard Brownian motion, wec
prove the existence of solution under the assumption that o and b satisfy the local
Lipschitz property and linear growth.

1. INTRODUCTION

Let (2, §, P) be a complete probability space with a right-continuous increasing
family (F:)¢>0 of sub o—fields of F each containing all P-null sets. Let B = (B;):>0
be an 7-dimensional (J;)-Brownian motion. We consider the following stochastic

differential inclusion.

(11) ng € U(t, Xt)dBt + b(t, Xt)dt,

where ¢ : [0,T] xR 5> RE®R", b:[0,T] x R* - R? are set-valued maps. In re-
cent years the study of the existence and properties of solution for these stochastic
differential inclusions have been developed by many authors ([4]). Furthermore the
results for the viable solutions have been made ([2], [6]). For the stochastic differ-
ential equation associated with (1.1), many results for the existence, uniqueness,
and properties of solutions have been done under various conditions that o and b
are continuous and bounded or Lipschitzean or Holder continuous ([3]).

In this paper, we prove the existence of solution for stochastic differential inclu-
sion (1.1) under the condition that ¢ and b satisfy the local Lipschitz property and

linear growth.

2. PRELIMINARIES

We prepare the definition of solution for stochastic differential inclusion and
some results for the stochastic differential equation and selection theorems.
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Definition 2.1. An r-dimensional continuous process B = (Bt)te[o,00) is called an
r-dimensional (§,)-Brownian motion if it is (§;)-adapted and satisfies

Elexpi <&, B, — Bs >] | §,] =exp[—(t - 5)|¢*/2], as.
forevery £ € R and 0 <s < ¢t

Let us consider the stochastic differential inclusion

(11) dX,; € O'(t, Xg)dBt + b(t, Xt)dt

with the initial value Xy = zo, where o : [0,T]xR? — R*®R", b: [0,T] x R¢ - R?
are set-valued maps and zp is a R%-valued Fo-measurable function.

Definition 2.2. A stochastic process X = {X,, t € [0,T]} € LY - C([0,T] —
R?)),q > 2, is said to be a solution of (1.1) on [0, T] with the initial condition zg if
there are predictable random processes f : 2x [0,T] - RI®R", g: Q2 x[0,T] — R?
such that f(t) € o(t, X:), g(t) € b(t, X;) a.s. on [0,T] and for every ¢ € [0, 7],

¢ ¢
X =z +/ f(s) dB, +/ g(s)ds as.,
0 0

where

LI(Q - C([0,T] = R%))

= {X | X is predictable, continuous, and E[ sup |X,|9] < oo}.
0<s<T

For the stochastic differential equation

t t
. Xy = X s + s g s
(2.1) = £+ /0 (s, X,)dB fo b(s. X,)ds

where 0 : [0,T] x R* > RE®R", b:[0,T] x R? - R? are B([0,T]) ® B(R?) @ Fr-
measurable and §;-progressively measurable for each z € R?, £ is So-measurable,

the following theorems are well known.

Theorem 2.3. ([5]) We assume the followings.
(i) For each N > 0, there exists a constant Cn > 0 such that

{ Ha(t,m)—a(t,y)HSCN|x—-y|. xryEBN
|b(tr)—b(ty)|§CN|x—y|, xayEBNv ’
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where By = {z € R?,|z{ < N} and |jo]2 = 37_ % o} = tr(o0™).

(ii) There exists a constant K > 0 such that

%I!a(t.,:c);l2 +z* bt z) < K(r(t)2 + 1z2).

where 7(t) is a progressively measurable such that

E [ €)% + AT{|5(3,0)|2 + r(s)2}ds]< <.

Then (2.1) has unique solution X, and

t
E[X? < E [|§l2+2K/ r(s)?ds] Xt W< T
0

3. MaAIN RESULTS

For a Banach space X with the norm |! - || and for non-empty sets A, 4’ in X,
we denote |[A]| = sup{||a]| | a € A}, d(a, A’) = inf{d(a.a’) | @' € A'}. d(4.A") =
sup{d(a, A’) | a € A} and dg (A, A') = max{d(A, A’),d(A’, A)}, a Hausdorff metric.
Given a family of sets {F,, | & € A}, a selection is a map a — f, in F,. The most
famous continuous selection theorem is the following result by Michael.

Theorem 3.1. ([1]) Let X be a metric space, Y a Banach space. Let F from X
into the closed convex subsets of Y be lower semi-continuous. Then there exists
f:X =Y, a continuous selection from F.

Proof. Step 1. Let us given by proving the following claim : given any convex (not
necessarily closed) valued lower semi-continuous map ® and every ¢ > 0, there
exists a continuous ¢ : X = Y such that for £ in X, d(¢(£), ®(£)) < e.

In fact, for every z € X, let y. € ®(x) and let ; > 0 be such that (y, +c4) N
®(z') # 0 for ' in B(z,6,), where A denotes the open unit ball. Since X is metric,
it is paracompact. Hence there exists a locally finite refinement {Us}z € X of
{B(z,62)}z. Let {mz(-)}, be a partition of unity subordinate to it. The mapping
p: X =Y given by p(£) = )" 7, (€)y, is continuous since it is locally a finite sum
of continuous functions. Fix §. Whenever 77(€) > 0, ¢ € U, C B(z.68,). hence
Yz € ®(€) + £A. Since this latter set is convex, any convex combination of such y’s
(in particular, ¢(£)) belongs to it.

Step 2. Next we claim that we can define a sequence {f,} of continuous mappings
from X into Y with the following properties

i) for each £ € X. d(fn(£),F(€)) < &, n=1,2--,

— 2n
ii) for each § € X, [Ifn(€) = fu-1(O| € 5. n=2,---.
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For n =1 it is enough to take in the claim of part Step 1, ® = F and ¢ = 1/2.

Assume we have defined mappings f, satisfying i) up to n = v. We shall define
fu+1 satisfying i) and ii) as follows.

Consider the set ®(¢) = (f.(£) + &) N F(£). By i) it is not empty, and it is a
convex set. The map £ — ®(¢) is lower semicontinuous and by the claim of Step 1,
there exists a continuous ¢ such that d(p(z), ®(z)) < 54t

Set fu41(§) = p(€). A fortiori d(fu41(£),F(€)) < 5kr, proving i). Also
for1(6) € B(6) + G A C £u(6) + (& + Fhr)A Le,,

i41(8) = £ Ol S oy

proving ii).

Step 3. Since the series ) 5= converges, {f,(-)} is a Cauchy sequence, uniformly
converging to a continuous f(-). Since the values of F are closed, by i) of part Step
2, f is a selection from F.

Let A C R" be a compact convex body, i.e., a compact set with nonempty inte-
rior, and let m,, be the n-dimensional Lebesgue measure. Since m, (A) is positive,
we can define the barycenter of A as

1
b(A) = ——— / z dmy,.
W= @y Ju = ome
Lemma 3.2. ([1]) The barycenter of A, b(A), belongs to A.

Proof. Assume the contrary: d(b(A), A) is positive. Set a to be w4(b(4)), b to be
b(A) and p=b —a.

By the characterization of the best approximation we have that for all z in A,
<z-a,p> <0. However from

P=b—a=a:1(—Af)/A(x—a)dm,,

we have

1
Ipll* =< =g [ (== adma,p >

@/,
= —— <zr-—a,p>dm, <0,
mn(A) J4

a contradiction; hence b(A) belongs to A.
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Lemma 3.3. ([1]) Let A C R” be compact and convex and consider A! = A + B,
where B is the closed unit ball. Then b(A?!) belongs to A.

Proof. As above assume it is not so. Set a to be m4(b(A!)), the point of A nearest
to b =b(A!), set p=b—a and p = p/||p||. Then

1
2 __ —
(3.1) ilpll = mn (A7) ‘/Al <z-—a,p>dm,

and as, before, to reach a contradiction it is enough to show that the right hand
side is non positive.
It is convenient to consider Sp, the linear transformation mapping z into its
symmetric with respect to the hyperplane orthogonal to p through a:
Sp(z)=a+(z—a)—2<z—~a,p>p
Set AL ={a€Al{<z—a,p>>0}, AL = {z € A<z -0a,p> <0}
We remark that Sp(A}) C A'. In fact fix z in A} and consider Sp(z):
Set z’ to be the projection of wa(z) on the line through = and Sp(z). By the
Pythagorean theorem to show that
llz — wa(z)|| 2> ||Sp(z) — ma(zx)|| it is enpugh to show that
llz — 2’|| > ||Sp(z) — z'{|. We have that
lz-d||=<z-2"p>=<z-0a,p> <72 —a,p>
and

[|Sp(z) —2'||==- < Sp(z)—z',p>=—<Sp(z)—a,p>+ <2’ —a,p>

=<z—-a,p>+<z —a,p>.

Since, again by the characterization of the best approximation, z’ belongs to Al ,
d(Sp(z), 4) < |ISp(z) - Ta@)]| < |l - 7a(=)|| = d(z, 4) < 1,
Then Sp(z) belongs to Al.
Write A! as (A} U Sp(A4})) U (A1\(A} U Sp(AL)))
and consider the integral in (3.1) separately on these two subsets. Remark that the
first is invariant with respect to the transformation Sp, that the determinant of
the Jacobian of the transformation Sp is one and that the mapz - < z —a,p >
is antisymmetric with respect to Sp. The change of variables formula hence yields

<zT—a,p>= / < Sp(z)-—a,p>
Sp(ALuSe(AL)) (ALuSp(AL))
= — / <r—a,p>.
Sp(AluSe(Al))
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Hence this integral is zero.
Since A'\(A} U Sp(AL)) is contained in A1,

/ <z-a,p><0
At

the desired contradiction.

Using Lemma 3.2 and 3.3, we have the following local Lipschitz barycentric

selection theorem.

Theorem 3.4. Let F : R® — R™ be a local Lipschitz set-valued map with compact
convex images, i.e., there exists a constant Ky > 0 such that

dH(F(.’L‘),F(y)) SKN * |x—y|, Vl‘ay € BN = {:L‘E]R",lxl SN}

Assume moreover that there exists a constant C > 0 such that ||F(z)|| < C -(1+|z]),
for every z € R®. Then there exist a constant Cy > 0 and a single valued map
f :R® = R", local Lipschitzean with constant C’N, a selection from F.

Proof. By Lemma 3.2 and 3.3, the single valued map ' = z — b(F(z) + B) is a
selection from F. We have to prove that it is a local Lipschitzean selection.

Fix z,2' € By. Call ®(z) = F(z) + B, ®'(z') = F(z') + B. Since [|®(z)|] <
[|F(z) + Bl < |IF@@)|+1 £ C-(1+z))+1 < C-(1+N)+1 = Cy and
mn(®(z)) < Cy+, we have

1 1
ma(2(z)) /¢(x) z dmn = mn(®'(2)) Jor (21)  dmn
1 1
< l( ma(®(z))  mn(T'(z)) ) A(z)nwz')  dmn l

(32) +’“ xdmn——l—/ z dmy,
M (®()) Jozpe () mn(¥'(2') Jo (z )\ 2(2)
< [ma(®(z)) — mn(®'(z))] - Cn+ - Cnver [ (mn(B))?

+{ma(®(z) \ '(z)) + mn(®'(2") \ ®(2))} - Cnv - Cnr fmn(B).

We with to express the above estimate in terms of dg (®, @'). For this purpose, we
begin to compare m,(® + §B), § > 0, and m,(®). Since the unit ball of R® is
contained in the unit cube {|z;| < 1,i=1,---,n}, we can as well estimate

ma{p+ ) diei | v € 8,16 < 6)

where {e;} is an orthonormal basis.
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iFrom elementary calculus we have that when $ is a convex set and v a unit
vector, the measure of {S + 8z | |6z| < 6} is ma(S) + |8|mp—-1(P.(S)) where P, is
the projection of S into the hyperplane normal to v through the origin (P,(S) is
the ”shadow” of S).

Denote by

o, = {<p+Z§ie,~|cp € 9,4; < 4}

i=1
and by P; the projection along the direction e;.
Recursively we obtain

n—1

Mn(Pn) < ma(P) +6 Z Min—1(Pn—j(®n-;))-
j=0

Since @ is contained in (M + 1) B, each element of each P;(®;) has a distance from
the origin of at most (M + 1) + 6./n, so that, setting B,_1 the unit ball in R*~!,

M (® + 6B) < mp(Pn)
< Mn (@) + 6nmp_1 ((M + 1+ 8v/n)Bn_1)
< muy(®) + 0K
for some constant K.
Set § to be dy(®,®’). Then & C & + 6B and ® C ' + 6B, hence m,(P\®') <

mn(®’ + §B) — ma(®’), and my(®'\®) < mu(® + 6B) — mp(®). Analogously,
|mn (@) — mu,(®')| < K4. Hence by (3.2), we obtain

|b(F(z) + B) — b(F(z') + B)| < Cy -dy(F(z) + B, F(z') + B)

for a suitable C}. Finally, since Ky is the local Lipschitz constant of F and set
C‘N to be Ky - K. We have

b'(z) — b'(¢')| < K - du(F(z) + B, F(z') + B)
< K -du(F(z), F(z')) < Cn - d(z,7),
i.e. f=b! is the required Lipschitzean selection.

Thus we have the following another main theorem by the above lemmas and
Theorem 3.4.

Theorem 3.5. Assume that
(i) for each N > 0, there exist constants C > 0 and Cn > 0 such that
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dH(O’(t,x) - O'(t,y)) < CN : |$ - y” T,y € BN:
dH(b(t,(L') - b(t7y)) < CN : I.T - y': I,y¢€ BNa
llo(t, )|+ [bt,2)| < C- (1 +|z]), zeR",

where By = {z € R4, |z| < N},
(ii) there exists a constant K > 0 such that

%lla(t,ﬂc)ll2 +lz) - [b(t, z)| < K(r(t)” + |2[?),

where 7(t) is a progressively measurable such that

E [ |zo|? + ./(;T{|b(s,0)|2 +r(s)2}} ds < oc.

Then (1.1) has a solution X; and
t
E(|IX,?| <E [ |zo|? +2K/ r(s)zds] 2Kt vt <T.
0

Proof. By the hypothesis i) and Theorem 3.4, ¢ and b have local Lipschitzean
selection. Thus the proof is complete by Theorem 2.3.
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