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Algorithm choice for the Cauchy location problem

Jinhyo Kim

Abstract

Newton-Raphson methods are often used to solve the maximum
likelihood estimation problems. The example in this paper illus-
trates a situation in which the Newton methods cannot be used
to solve a maximum likelihood problem due to its chaotic behav-
ior. Bisection, Secant-bracket, Illinois and Dichotomous search
algorithms are used for speed comparison as well as guaranteed
convergence.
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1 Introduction

The Cauchy location problem is a thorny one numerically with potential
usefulness in applications. The likelihood equation can - and for small n
does - have several roots. (cf. Thisted, 1988) Barnett(1966) noted that the
likelihood for the location parameter @ of Cauchy distribution is often mul-
timodal based on simulation study. Haas, Bain and Antle(1970) suggested
a method for finding the joint ML estimates. Wingo(1983) used Brent’s
method for the Cauchy problem. Hinkley(1978) employed Newton-Raphson
iterative technique for solving the Cauchy likelihood equation without as-
suring its convergence. It is well-known that Newton-Raphson iterative
methods has a fast convergence if it does. However, for guaranteed con-
vergence, derivative-free algorithm(s) for the current Cauchy ML problem is
suggested.
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Let Xi,..., X, be iid Cauchy random variables with density proportional
to 1/(1 + (z — 0)®) and let R, = R,(X,...,X,) be the set of roots of the
”Cauchy location likelihood equation”:

1
1+ (X - 0)7]

Ra= {613 5 o8~ = 0) (1)
Let r, = card(R,) be the number of roots. With probability 1 the likelihood
equation has only simple roots, which are alternatively local maxima and
minima of the likelihood function. Hence if r,, is odd, then there are (r,+1)/2
local maxima and (r, — 1)/2 local minima. These (r, — 1)/2 false maxima
are an embarrassment for the ML method of estimation; their number is
really quite small. (cf. Reeds, 1985) The number of local maxima of the
Cauchy ML function for location estimation which are not global maxima is
asymptotically Poisson distributed with mean 1/7 so that Pr{(r, — 1)/2 =
k} = e+ /(n*k!). (cf. Reeds, 1985) Perlman has shown card([—K, K] N
R,;) — 1 as. for each finite K > 0. This implies that the number of roots
in R, is, in a.s. sense, is one. A Monte Carlo study was recommendeded
by Copas(1970) for further work in which the probability with which such
sample configurations arise could be identified.

It is felt that the Cauchy ML case in this paper is harder than most of
other statistical distributions. As suggested by Copas(1970), this paper is
to present derivative-free algorithms, with guaranteed convergence based on
performance comparison with other selected algorithms.

2 Dichotomous Search

In this section, we review the derivative-free Dichotomous Search method.

(Definition) (Bazarra, Sherali and Shetty, 1993)
A function f is unimodal iff for each z!, 22 with f(z') # f(z?) and for
0<A<],

FOx! + (1 = N)2?) < max{f(z'), f(z*)}. )
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f(x2)
{=) f(z2) f(z1)

———— o—0
a I3 T2 b a T I3 b

Figure 1: test points

It is well-known that the unimodality is not a sufficient condition for the
correct convergence of the Newton-Raphson method. It is easy to find
out a counterexample. However, as will be shown below, the unimodality
guarantees the correct convergence of the Dichotomous Search method.

Given an initial region of interest Z = [a,b], as described in Figure 1,
we evaluate the values at the two test points r, and z; with z; < zp. If
f(z1) € f(x,), then the new interval of ‘uncertainty’ becomes (@, z9] since
the optimum point cannot exist in (zz, ). Otherwise if f(z,) > f(z2), then
the new interval of uncertainty is [z;,b]. Notice that depending on the value
comparison of f at z; and I, the length of the new interval of uncertainty
is either equal to b — z; or za — a, which is less than b — a. In selecting z,
and z,, one usually takes them symmetrically around the midpoint (b+a)/2
of a and b with certain distance ¢ > 0. Depending on the values of f at
z; and z,, as mentioned above, a new interval of uncertainty is determined.
This procedure is repeated with placing two new observations z; and z, for
the next iteration until it terminates. In fact, this procedure works for any
a < I; < T3 < b. However, a particular choice of € = z; — (b—a)/2 yields an
optimal algorithm, so called the ‘Golden Section Search’, with the ‘golden
number’ a = (z; — a)/(b— a) = (V5 —1)/2 = 0.618.

Algorithm for the Dichotomous Search
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Initialization step

Choose a constant a (=0.618) and an allowable final length of
uncertainty, { > 0. Let [a;,b,] = [a,d] be the initial interval of
uncertainty, and note that the initial interval Z = [a1, b1] includes
the optimum point, and let £ = 1 and go to the main step.

Main Step

1. If by — ax <, then stop; the minimum point lies in [ax, by).
Otherwise consider z, and z, defined in Formulae (3) and
(4) ; go to step 2.

z) = ax + a(b — ag) = (1- a)ax + aby (3)
I9 = bk - a(bk - ak) = aax + (1 - a)bk (4)

2. If f(z1) < f(z2), let axyy = ax and byy; = To. Otherwise
let a3 =z, and by = bx. Replace k by k + 1, go to step
1.

In Formulae (3) and (4), it should be noted that one of the values at the
two test points in current iteration can be reused in the next iteration if the
optimal constant a = 0.618... is given, with which the the Golden Section
Search is achieved as illustrated in Figures 2. It implies that the Golden
Section Search requires only one additional test point in each iteration step.
However, due to its floating-point representation in a digital computer (the
digital computer cannot recognize irrational numbers), in practice one cannot
use the above algorithm as precisely as above. Given a = 0.618.. ., the test
point in next jteration step will be only mathematically coincided, but not
computationally. Therefore, it is recommended to store 1)the locations z;
and z, and 2)the values f(z;) and f(z,), and to reuse one of them without
evaluating over again in the next iteration.

The following two theorems, which can be found in Bazarra, Sherali and
Shetty (1993), validate the convergence of the Dichotomous Search method.
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Figure 2: Using the fixed ratio o at kth and (k+1)th iteration

(Theorem 1) Let f : R' — R! be unimodal over [a, b] with 2, < z, € [a, b].

If f(z1) < f(x2), then f(2) > f(z1) for all z € (z3,b]; and if f(z1) > f(z2),
then f(z) > f(z2) for all z € [a,z,).

From Theorem 1, we know that if f(z;) < f(z3), then there must not exist
an optimum point in [z3,b] since f(z) > f(z;) for all z € [z,,b). Now we
eliminate the region [z3,b) to get the new interval of uncertainty [a, ;] for
the next iteration step. In this way, our region of interest will be reduced in
each step until we reach the optimum point within an allowable final length
of uncertainty. A similar argument follows for the case of f(z,) > f(z3).

(Theorem 2) Consider the problem of minimizing a unimodal function
f(z) defined on an open set S C RP. If x is a local optimal solution using

the Dichotomous Search method, then z is also the global solution.

By Theorem 2, we are convinced that if we find one local optimum point
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of a unimodal function f(z), then it is necessarily the global optimum point.
In the above two theorems, whenever a function to be minimized is unimodal,
the Dichotomous Search always finds the optimum point. This is definitely
a great advantage over the Newton-Raphson method, since Theorem 2 does
not hold for the Newton-Raphson method.

3 Simulation Study

Set the parameter § = 2, for example, and generate a random sample from
the Cauchy distribution using the known formula:

tanlr(U — )] +0 ~ Cauchy(®) 5)

where U has the Uniform(0,1) distribution. The pre-setted value § = 2 is
irrelevant since it is location-equivariant. In Figure 3, the object function
1(0) of the log-likelihood is unimodal on the range of —10 < 6 < 10 and
has minimum value around # = 2, as is expected from the presetting of
6 = 2. The graphs of £(0) are observed with unimodality by inspection. But
unfortunately no analytic method was found to verify its unimodality. Even
though it is not proved or verified that f is always unimodal, we assume it is
unimodal in the current simulation study. The plots are visually examined
more than 100 times; all of them exhibits unimodality.

Newton-Raphson method

With an initial value of ;5 = 3, it converges to 6 = 2.1501426 after 6
iterations. However, this method will diverge if we roughly set |6;nrr| > 3 ;
the Newton-Raphson for a unimodal function may diverge. Given an initial
value of 1, the iteration ends to bye = 0.1501426 after 6 iteration steps.

Bisection
With initial two values of 7, = —10 and z; = 10, it converges to § =
2.1501426 after 29 iterations. We notice that the condition f(zo)f(z1) <0
guarantees the convergence by the Mean Value Theorem. Suppose we are

given the condition f(zo)f(z1) < 0 for initial values of zo and z;, then this
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bisection ! secant-Bracket | Illinois | golden section

initial interval | [1] | [2] ! [1] 2] [ {12 | [1] 2]
[-1,1] 2| 27 | 8 6 16|5[34] 35
[-10,10] 29| 29 |15 14 10|12 39 37
[-50,50) 31| 32 |19 19 13 | 12 | 43 42
[-100,100] 32| 33 |21 20 13[13 |44 42

Table 1: (Comparison of speed) [1]:n =15 [2]:n =30
method has a guaranteed convergence unlike the Newton-Raphson method.

Secant-bracket method

An alternative to Newton-Raphson method is to approximate the derivative
by a finite difference such that f(z) ~ (f(z:) — f(zi-1))/(zi — ziz1). It
uses the secant line through two successive points. This method also has
no guaranteed convergence. Given two values z; and z;.;, the secant of
f(z) is the line intersecting the curve f(z) at (z;, f(z;)) and (z;_1, f(zi-1)).
However it exhibits relatively fast convergence if it converges. Note that the
derivatives are estimated from the previous iterations rather than being sup-
plied analytically. For initial value of zg = —10 and z; = 10, fyrg converges
to § = 0.1501426 after 14 iteration steps. For same initial two point same
as in Bisection method, the Secant-Bracket exhibits fast convergence.

Illinois method

For initial value of zo = —10 and z; = 10, furx converges to § = 0.1501426.
This Illinois method shows convergence after 12 iteration steps, which is
faster than Bisection and Secant-Bracket.
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Figure 3: Cauchy ML surface with respect to sample size

4 Concluding remarks and future study

As we can see, neither the Newton method nor the Secant method is rec-
ommended. The Secant method does not have a guaranteed convergence
of the ML function with multiple local maxima. It is well-known that the
Newton method is not reliable since it sometimes diverges to the choice of
the initial value and sometimes converges too slowly; for the current Cauchy
location problem, the Newton method does not converge to the choice of the
initial value. But the Dichotomous Search method can be used with guar-
anteed convergence whenever the graph shows unimodality and furthermore
we can even predict how long it takes. This particular simulation study
shows that the Illinois, secant-bracket, bisection, golden-section methods are
in descending order in speed comparison. The Illinois algorithm performs
speediest convergence than other selected methods. Evidently the Newton-
Raphson algorithm has worst convergence. The number 1 of simulated data
was not relevant in the situation. However, for guaranteed convergence, the
Dichotomous Search was recommended even with relatively slower speed.
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Based on the above 4 algorithms, we summarize the result in Table 2. It
is evident that the Newton-Raphson method cannot be a proper choice for
the Cauchy location problem. The Illinois method has faster convergence
than the Bisection method and Secant-Bracket methods. The golden section
search with slower convergence than the bisection and the secant-bracket
method has a guaranteed convegence. The number of data is not relevant
for the convergence speed.

An extension of the one-dimensional Dichotomous Search to the multi-
dimensional parameter case, the 'Iterated Grid Search’, can be applied to
the Cauchy location-scale problem described in Appendix. However the
analytic argument why the Cauchy ML function with location and scale
parameters shows mostly unimodality phenomenon is not satisfactorily solved
yet. Similar results can be derived in many other cases; 1)replace the Cauchy
distribution of the data by some other iid distributions and 2)replace ML
method of estimation by another M-estimate method. In many cases simpler
arguments than in the Cauchy distribution are sufficient to count the number
of false maxima. Typically LLN alone are sufficient. Stochastic optimization
tools including simulated annealing is suggested for future study.

5 Appendix

Consider X},..., X, be iid random variables from the Cauchy distribution
with density proportional to o/{o*+ (z — 6)*} which produces log-likelihood
€0,0;11,...,2,) = nlogo—Y log{o? + (z; — 8)*}. Setting 0¢/06 = 9¢/do =
0 gives the set of nonlinear equations Y%, ¥1(6, 0; z;) = 0and X3, ¥2(0, 05 ;) =
0 with respect to  and o where

I — 0
(b,0;z) = m (6)
o2 1
Ya(0,0;z) = pry— R (7)
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5.1 Scale estimation with fixed location parameter
When equation (7) is satisfied, it is easy to show
628 4 i (.’L',' - 0)2

807~ §[02+($i-9)2]2 <7 ©

ﬂ _ 1 —0’2+($,'—0)2
06® o [0? + (z: — 0)]
0 & —20(z; - 0)
0000 5 [02 + (z: — 6)]
Therefore, for 8 = 6, fixed, L(6,0) = L(6y, -} as a function of o alone is
unimodal upwardand even convex.

(9)

(10)

5.2 Location estimation with fixed scale parameter

The maximum likelihood estimation problem in the Cauchy distribution for
the location, when evaluated at the MLE of the scale, is unimodal consider-
ably more often than might have been anticipated from the single-parameter
case. If the scale parameter is eliminated by a conditional ML argument, giv-
ing the maximized likelihood function, then the resulting function is always
unimodal.
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