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for River Pollution Control
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Summary

A discrete state space model for a multiple-reach river sysiem is described using the dynamics of

biochemical oxygen demand (BOD) and dissolved oxygen(DO). A hierarchical optimization technique,

which is applicable to large-scale systems with time-delays in states, is also described {o preserve

stream qualily in a river based on the interaction prediction method. the steady state tracking error of

the proposed method is determined analytically and a necessary and sufficient condition on which a

constant target tracking problem has zero steady-state error is derived. Computer simulations for the

river pollution model illustrate the algorithm,

Introduction

In recent years there has been an increasing
interest in the modeling and control of water
quality in a river. Many parameters can be used
to represent water quality in a stream, bul
the BOD and DO
concenirations are the most universally accepted
1975).

In partictiar, the dynamics of DO concentration

it is widely known that

criteria  (Haimes and Macko. 1973:Singh,

is dependent on that of BOD concentration. If the

DO falls below certain levels or the BOD rises
above certain levels, ecological balance of the
river is often broken down., Therefore, it is
necessary to control the BOD and DO levels to
fluctuate between predefined bands while at the
same time minimizing the cost of treatment in an
optimal manner,

The state space mode! for the river with many
polluters hecomes large-scale time-delay systems

ILSTD) 1981},

research has been done on the optimmal control

(Singh et. af, A considerable

of time-delay(TD) systems. They can be

* g el & Az gt (Dept. of Electronics Engineering, Cheju Univ., Cheju-do, 690-756, Korea)
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categorized into two classes at large. One ap-
proach which results in a suboptimal control law
is based on the concept of optimal control
1972). In this

the control law is expanded into a

sensitivity (Jamshidi and Zavarei,
approach,
MacLaurin series in some parameters, The other
one is to convert the TD problem to a nondelay
1980).
are prohibitive to the LSTD systems such as a

problem (Zavarei, But these approaches
river pollution problem due to their computational
burden.

To get around computation! difficulties which
are associated with computational time and
Tamura {1974)
LSTD

decomposition and coordination technique.

has proposed a
by
The

main disadvantage of Tamura’'s method is that it

storage space,

multi-level method for systems

is necessary to perform linear search for the

upper-level gradient algorithm. Hence the
convergence rate is comparatively slow. Singh et
al. (Singh, 1976; Singh et. of, 198]1) have

proposed a promising hierarchical algorithm by

using interaction prediction method. This algo-

problems. On the upper-level, it has more rapid
convergence rate and fewer operations than
other coordination rules such as linear search

algorithm. But it also has a disadvantage that

dimension of the given system has to be
increased to transform the TD system into
nondelay system.

In this paper, we describe an efficient
hierarchical optimal control method for the LSTD
systems based on the interaction prediction

method without increasing the system dimension.
The optimal tracking problem is transformed into
a regulalor problem with constant input by
introducing a predetermined nominal input to the
performance index. The steady-state tracking
error for the method is determined analytically.
Also,

zero steady-state error is derived.

a necessary and sufficient condition for

Problem Formulation

A schematic diagram of a river with multiple

rithim is found to be superior to other multi-level sewage work can be depicted as in Fig. 1
methods for a certain class of optimization (Tamura, 1974).
S1,p1 S2,p2 Sn, Pn
L | 4] Y
€1 lm €2 | m &n } ma
T e 1
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Fig. 1. A Schematic diagram of river system.
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Then, from the mass balance considerations, we

derive the following equations that govern the

evolution in time of the BOD and DO

concentrations.

BOD:z;(k+1)-z{k) =-az (k)

Q1 (k) Q; (k)
'i‘l/l* iy~ Y z;(k)
¥ (g0 2mE M

1

DO: q; (k+1) ~-qQ; (k) = -z (k) + ﬁi[qi_qi (k)

1 (K  (k
+ Q{‘ - Qi - QV{)A’ q, (k)
046,00 + PO 2

(=12 nk=12 k1)

is noted that the
dynamics of DO is dependent on that of BOD. In

From above eqations, it

these equations the symbols mean as followings.

z;(k) . concentration of BOD in the ith reach at
time k (mg/?¢)

q; (k). concentration of DO in the ith reach at

time k(mg/¢)

¢’ : saturation concentration of DO in the ith
reach{mg/#¢)

s.(k): concentration of BOD in the effluent

i
dischared to the ith reach at time k
before treatment (mg/#)

volume of the effluent discharge in the

reach during the time between k and k+1

(m)

& (k) : fraction of BOD removed from the effluent
in the ith reach during the time between k
and k+1

Q,(k): volume of water that flows from the ith

reach to the (i+1) th reach during the

time between k and k+1(»)

V.. volume of water in the ith reach (m)

g, (k). removal of DO from the ith reach by the
effects of photosynthesis and respiration

during the time between k and k+1 (mng/¢)

£ k). addition of DO in the ith reach by the
aeration (mg/¢) during the time between k
and k+1

In (1) and (2) the terms gz, and q;, can be
written as follows by taking into account the

dispersion of BOD and DO concentrations.

o

Ziy = 37 a, z;(k-j) (3a)
1=1
6x

Qi = 21 a; Qi1 (k_J) (sb)
i=
i} a; =1 (3c)

=1

The distributed delay model, (3) shows that for j

=1,2. -, m, fraction a; of BOD and DO in the
(i-D)th reach at time (k-6) arrives in the ith
reach at time k. This means that the dispersion

delays are distributed in time between 8, and &,
Let's define the state and the control vectors as :

x(k) = (z,(k)q;k)z(k)qpk)
oz (k) q, (0T (4a)

ulk) = (g k) &) & k)7 (4b)

Then the following state space model can be

obtained.

xk+1 = Ax(k) + Ax(k-1)+ -
+ Agx (k-6,) + Bu(k) +c (5a)

with initial conditions

x (k)

i

¢, (K), -6,< k <0 (5b)

ulk) = 8, K, -6,< k €0 (50)

Without loss of generality, we assumed that the
matrices A, B and ¢ in (5a) are constant. In
(5a), AG=0.1, -, 8) € R&2n

matrix, BE R®™® s an input matrix, c& R s

is a system

a constant input vector, 0,( is a delay in states.

Let's define the performance index for the op-
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timal tracking control problem as

kf-1
J=%k§:_0(|x(k)—xd|é+|u(k) -ut[} 6)

where QER?™" is a state weighting matrix, Re
R™ is an input weighting matrix, xd€R**! |5 a
constant desired or reference value of state
vector and un€R™! s a predetermined nominal
control input, which will be discussed more detail
in the next section. It is assumed that Q and R
are positive semi-definite and positive definite
block diagonal matrix, respectively. Here, the
optimization problem is to find a control law
which causes the state vector of the system (5a)
to follow a desired value that minimizes the

performance index (6).

Define a new state and control vector as

il

z (k) x (k) - xd (7a)

v (k)

1]

uk) - u" (7b)

Then the above optimal tracking problem can be
transformed into a regulator problem with a

constant input which is expressed as

z(k+1) = Agz(k) + Az(k) + -
+A9x z(k—ﬁx) + Bv (k) + ¢r (8&)

z(k) = ¢,.(k) -x¢, -6,< k <0 (8b)

vik) = g, k) -un, -8 < k<0 (8c)
kf-1

J=4% guz(knéﬂv(k) 12) @

where

0x
b = AT )xd + Bun +c.
¢ = (2 Aclxd+Bun+e (10)

It is prohibitive to use the centralized optimal
control method to obtain the optimal solution for
the above LSTD system due to computational
computational

burden. To overcome the

difficulties associated with computational time

and storage space, we develope a hierarchical
technique based on the

method.

interaction prediction

Hierarchical Optimization

The above centralized oplimal regulator prob-
lem for the LSTD system is decomposed into
smaller subproblems to obtain the optimal so-
manner. The i-th

lution in a hierarchical

subproblem is expressed as

z;(k+1) =7z (k) +Byv; (k) + P +h;(k)

ii“i ii'i

(11a)

N [23
h; k) = 2 (2= Lij ZJ(k‘])}
G#1, f1=0 1=0
N
+35 M,y (11b)

i

zi(k) = ¢y (k) - %' . -8,< k <0 (11c)
vitk) = ¢, (k) -u?, -8,< k (0 (11d)
k-1
Ji = %kZ_(I) {1z, (k) Iél +|vi(k)|2Ri) (12)
i=12 - N

where h;(k)] €ER"*! consists of interaction inputs
which come in from the other subsystems and
states of the

time-delayed i-th subsystem,

L; ER™™ is a coupling matrix of states.
M, ER™™i is a coupling matrix of control inputs,

N is the number of the interconnected subsystems

N
which comprise the overail system,>n =2n and

N
2.m=n,
=1

i=1

Now, we use the interaction prediction method
which is attractive due to simple upper-level

algorithm and fast convergence rate. The

interaction prediction method is essentially

composed of obtaining optimal solutions of
decomposed subproblems at lower-level and of

updating the coordination vector to force the

-294-



Hierarchical Optimal Control for River Pollution Control

independent lower-level solutions to the optimal
solution of the overall system.

First, consider the lower-level problem to find
the optimal solutions for the decomposed
subproblems. The Hamiltonian function for the i-

th subsystem can be written as

H=llz, k) 1§ +2% vk 1§ + 77Kk
N 8

- 22«

(=1 if1=0) 1=0

rik+1) Lz ()

N
ST OM;vi(0 +qf (k+ 1) (Az, (k)

i
1#1

4By, (k) + P+ Ry (k) ) (13)

where 7;{k) ER™*land q,(k) € R™! are La-
grange multiplier and costate vector of i-th

subsystem, respectively. From (13) the

necessary conditions for optimality are

obtained as

7 (k+1)=A;z; (k) +B v (k)

N ] uol

+c? +h (k) (14a)
7(0) = $4(0) - x! (14b)
N
vi() =-R,' (BT q,(k+1)-32 Ml 7;(k) ) (14c)
JFi
r,(k) =0, (k2 k) (14d)
q,(k) = Qz k) + Al qk+1)
N ex
- 33 L rk+1D) (14e)
GFLIT=0 1=0
Q;(.}\'() =90 (146)
Next, consider the upper-level problem in
order to optimize the overall system by

coordinating the lower-level solutions, For this

purpose, the additively separable Lagrangian

function can be written as

N krl
L =23

1=]1 k=90

+7F (k) -

U5 12,k 1G, + 24 bk 1R
N
rI (k)

GEiafl=0

0x N
[g Lm Zi(k—l)] +Z: T]T (k) I\’Iﬂ Vi(k)

i*Fi
+ qf k+1(A; z(®K + By v,k
+ ¢ + hik) - z(k+ 1)) (15)

Then the coordination rule at the upper-level

from iteration L to L+1 is obtained by

Pi (k)_]L-H
Lhi (k) -

[‘—q; k+1) L
N fx N (16)
LU*LEO)[E Lulzj(k-l)]+§ M;v; (k)

Now, a step-by-step computational procedure
to obtain optimal control law for the LSTD sys-
tem is summarized.

step 1: At the upper-level, set L=1 and pre-
dict initial values for 7;(k) and h(k) (i=1,2.-,
N, k=0.1,-,
the lower-level.

step 2: At the
independent necessary conditions for optimality
(14a)-(14f) by using r;(k) and h;(k) passed from

kf-1). Then pass them down to

lower-level, solve the

upper-level.
step 3. At the

convergence of (16). i.e.,

upper-level, check the
whether their errors
are within the predetermined error bounds, & If
not, update 7;(k) and h;(k)} from (16) by using z
(k). v;(k) and q; (k) passed from the lower-level.
Then set L=L+1 and go to step 2.

step 4 : If step 3 is converged, calculate the
optimal control law and state trajectory from

(7a) and (7b), respectively.

Steady-State Considerations

If the final time kf is large enough for the
systemm to reach a steady-state, the following
Theorem can be applied.

Theorem 1 :If the proposed hierarchical algo-

rithm in section 3 for the optimal control of the
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LSTD system (5) and (6) converges and the in-
6x
verse of (In -33 A,) exists, the steady-state
1=0
tracking error is given by
ox
e = -{[,-(32 A) + BR'BT
1=0
6x
[In-]‘;u: AT 1'Q) ' er 17)

Proof : If the algorithm converges we

obtain the followings from (16)

7k = -q(k+1) (182)
N 6y
hi(k) = >3 (33 Lijl Z](k'—l)]
{i#*i,1f1=0) 1=0
N
+22 M vl (18b)

j*i

Substituting (18a) and (18b) into the necessary
conditions for optimality (14a)-(14f), we obtain

the following integrated expressions :

x
z(k+1)=2u A zk-1) +Bvik) + ¢ (19)
1=

vik) = -R'BT'q(k+1) (20)
&

ak) = Qz(k) + 1}:‘.Af atk+1+1) (21
=0

Since z(k), v(k) and q(k) are constant vectors at

steady-state, we have

o
g, =2 Aizg + Bvg + cp 22)
1=0
v, = -R'BT g, 23)
o
q, = Qz, +1>;3A1T q (24)

where the subscript s denotes steady-state.
Substituting (23) and (24) into (22) we obtain

Ox
U, -32 AJz, = ~(B R"B")
1=0

o
(I, -22A7 )" Qz, + @ (25)
1=0

We define the steady-state tracking error as
egs = Xd-xg (26)

Then,
obtain (17) from (25). This completes the proof.

taking into account (7a) and (26), we

Remark 1:

(@) It is noled that the quantily inside the

braces on the righ-hand side of (17) is

ox
nonsingular if the inverse of (I, -32 A,) exists.
1=0

(b) Theorem | reveals that the steady-state
tracking error can be obtained from the state
equation and the performance index without
solving the optimization problem.

(c) It is noted that an increase in Q| or a
decrease in JR| reduces the steady-state
tracking error.

(d) (17) can be rearranged as

6x
B R-1BT (I,-33AT )7'Q e
1=0

= -cr- (I —é Adeg @7
The above equation shows that when allowable
steady-state error and the input weighiting matrix
are given, the state weighting matrix can be
determined if the right-hand side vector of (27)
belongs to the column space of the left~hand side

matrix of (27) except Q e

Remark 2:

{(a) From Theorem I and (10), the necessary

and sufficient condition for zero steady-state
6x

tracking error is that a vector (I, -33 A Jxd - ¢
1=0

belongs to the column space of a matrix B.

(b) The steady-state tracking error does not
exist regardless of Q and R if the necessary and
condition for zero

sufficient steady-state

tracking error is satisfied. In this case, if B has
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full colum rank the nominal control input un is

obtained by

6x
un = (B'B)BT {(I, -3 AJxd - ¢} (28)
1=0

(c) If the necessary and sufficient condition is
not satisfied, the nominal control input obtained
from (28) is a approximate least-square solution
for cp=0. In this case the steady-state tracking

error is give as

o 6x
e, = ([,-(32 A) +B RIBT( -33AT 3-1Q) -1
1=0 1=0

6x
{{1,-B(BTB)-IBT] (I,-33 A J'x%-c]} (29)
1=0
if B has full column rank.

Numerical Example

To illustrate the algorithm, river pollution

model of River Cam outside Cambridge, England

{Tamura, 1974) is considered. The numerical

values for the model are N=2, n;=2, m;=1(i=1,
2). 6,=2,

A, = 10180 B; = [—Z_l .
-0.25 0.27], 0], (=12

¢, = (4.5 6.15]T, c, = (2 2.65)T,

Liw = Lin =Ly =Ly =Lz =L =La =0,

Lo =[0.0825 0. ]
0. 0.0825] .

L., =[0.085 0.
0. 0.0385]
Lzlz = ’_0~ 0825 0. 7
0. 0.0825] .

We have chosen that Q=1I, R;=100, €=10" and
kf =30 which is large enough for the system to
reach steady-state. Simulations are carried out
for the following two cases.

Case 1 : The necessary and sufficient condition

for zero steady-state tracking error is satisfied :
x! = (4,16 7.0)T and x§ = (5.56 7.0)T.
Case 2 : The necessary and sufficient condition

for zero steady-state tracking is not satisfied:x‘,’

= (507.0)T and x§ = (5.0 7.0)T
The simulation results for the Tamura’s method

and proposed method are summarized in Table 1.

Table 1. Summary of the simulation results

. . steady-state
method iteration tracking error

number

case 1 case 2

Tamura's 16 (-1.48.01 | (-.61 .16
method -1.36.78)7 |-1.20 . 34)T
proposed 9 0 (0. .29
method 0. .02)7

It is important to note that the proposed
method is advantageous over the other methods
in steady-state tracking error and convergence
rate, The steady-state tracking error resulted
from the proposed hierarchical algorithm is con-
sistent with Theorem 1. Note that the steady-
state tracking error of the proposed method in
case | is zero. Also, the optimal trajectories of
state variables and control inputs for the case 1

are shown in Fig. 2.

10
gt
X 7.0

6.

r

1}

: x, 4.16
4
2

SIS0 Y N N W S S ST ST St S U S S U B NS S

B B A B e e T s e e T M e
0 5 10 15 20 25 30

(a) State variables of subsystem 1
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8t
‘." X 7.0
61 \_.c_: xs 5.56
T .
4-
2.
i B I e o e o A LB
0 5 10 15 20 25 30
(b) State variables of subsystem 2
0. 5444~ b
} — e b+
Sl 5 10 15 20 25 30
-0.1356f - o

(c) Control inputs

Fig. 2. Optimal trajectories of state variables and
control inputs.

Conclusion

A large-scale discrete-time state space model
for a multiple-reach river system in obtained by
putting BOD and DO concentrations as state
variables. A hierarchical optimal control algo-
rithm which is applicable to the river pollution
model is developed using the interaction predic-
tion method. The steady-state iracking error is
determined analytically and a necessary and
sufficient condition for zero steady-state error is
derived.

Computer simulation for the river pollution
model reveals that the proposed method has
better steady-siate response and fewer upper-

level interations than Tamura's method.
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