Free Shelf Waves over a Linear Double
Shelf as in the Yellow Sea*
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Introduction

The theories of coastally trapped waves
have gradually been established and now there
is little doubt about that coastally trapped
waves play an important role in the coastal
ocean response to applied wind streses, The
theories have been first developed for the
single shelf case (Buchwald & Adams, 1968:
Gil & Schumann, 1974 Huthnance, 1975,
1978: Brink & Allen, 1978: LeBlond & Mysak,
1978: Clarke and VanGorder, 1986: etc.) and
thereafter for the various cases of different
shelf such as submarine banks and trenches
(Louis, 1978: Mysak etc., 1979, 1980, 1981;
Brink, 1983). the theory for the
double shelf case has been reported, Hsueh
and Pang(1989) have developed the theory

Recently,
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and shown a good assesment of its application
to the Yellow Sea, Pang (1992) has shown the
general properties of coastally trapped waves
over an exponential double shelf topography.
An exponential topography allows analytical
solutions in the whole ranges of wave number
for non-divergence case. Over a double shelf
topography, two sets of waves propagate in
opposite directions, with the shallow waters to
the right in the northern hemisphere, The
gropu velocities of shelf waves have the same
direction as the phase velocities in the long
waves, but the opposite direction in the short
waves

An exponential topography, however, does
not allow analytical solutions for divergence
case, The horizontal flow divergence is es-
sential for explaining a major part of the
ocean response on a double shelf (Hsueh &
Pang, 1989), while it is ignored on a single
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shelf when the cross-shelf dimension is much
smaller than Rossby deformation radius,
Analytical solutions for divergence case could
be obtained by a linear topography. Hsueh &
Pang (1989) have obtained them for long
waves, However, in spite of the basic
establishment, the theory should be further
developed to include short waves and to prove
the orthogonality of the bases. The purpose
of this paper is to develop the theory of
coastally trapped free waves over a double
shelf topography for divergence cases. It is
extended to short waves, which is necessary
for small scale coastal ocean dynamics sch as
reflecting or scattering, and the orthogonality
is proved for eigenfunction expansions,

Field Equation and Boundary
conditions

Small perturbations to a barotropic ocean
satisfy the equation :

Hp p +H,p, +Hp, +fHp + (),

- ((f*~")/e)p,

==((B-0')/8) Py+E(Y X ) wemrmmeneens

In this equation, x, v, t. p, g. f, r, H, p,,
X and Y refer respectively to cross—shelf
distance, alongshore distance, time, pertur-
bation pressure divided by mean water
density, acceleration due to gravity, Coriolis
parameter, bottom resistance coefficient,
water depth, atmospheric perturbation pres-
sure divided by mean water density, kinematic
stresses in x and y direction at surface (the
wind stresses divided by mean water density) .
Subscripts indicated drivatives,

Fig.1 shows a schematic representation of
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H (x)=H

Hi(x)=Hol(x L)/Ls

H (x)= -Ho(x~L2)/{L2-Lm)

Schematic representation of the coor-
dinate system and geometry of two
shelves of linear depth profile and a
level intervening region. The

coordinates x, y, and z refer to the
cross-shelf, alongshore, and vertical
directions and are oriented eastward,
northward, and upward, respectively.

Fig. 1.

the coordinates system and geometry of two
shelves of linear depth profile and a level
intervening region, To begin with, an

intervening region is put between the two
shelves so that shelf 1, ‘intervening region,
and shelf 2 are placed in -B,<x<0, 0sx<L_,
and L _<x<B,, respectively. So, the linear bot-

tom topography (H) can be set as follows :

H,=H,(x+L,)L,

-L,<x<0 in shelf 1
H(x) = H =H,.
0<x<L_ in middle area---- @
H=-H, L)/ (LL).
L <x<L, in shelf 2
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As the coastal boundaries, the no-flux
boundary condition is applied, which means
that the depth integrated offshore velocity
vanishes. For most cases of coastal ocean
dynamics, wind stresses are applied through
the coastal boundary condition, Near coast,
the Ekman flux produced by alongshore wind
stress gives rise to the convergence and
which dreives the interior

Consequently,

divergence fluxes,
flow. the interior flows are
driven by the wind stress applied through the
coastal boundary condition. In the case of a
linear depth profile, Mitchum and Clarke (1986)
have concluded that the place where the
water depth is about 3 times the Ekman layer
thickness is the best place for the imposition
of the no-flux condition. At x=0, L , the
‘continuous pressure’ and the ‘continuous
transverse velocity boundary conditions are

applied, as follows :

P+ /N p, +P, =fY/h,

at x==B,reeeeesereeenennns 3-1
P|=Pm' at X=0 cereerereernrninanianans 3-2)
PP, =P +IP .

At X==0eeeeeereenreniennieninn (3-3)
P =P,, at x=L wooeemeemseeennes (3-4)
Pog Py, =Py, +1P, .

at x=Lm ..................... (3-5)
Pyt (/0 py,+P, =fY/h,

At X=Byeereerreemerersinnienn (3-6)

To solve the above eigenvalue problem,
either frictionless eigenfunction or frictional
eigenfunction can be wused. Frictionless
eigenfunction has been used conventionally,
but Webster (1985) has started to use frictional
eigenfunction .

In this work, frictionless

eigenfunction is used,
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Dispersion Relations

1. Low-frequency and Long-wave

Case

The wusual low-frequency and long-wave
approximation will be invoked in this section.
The field equation (1) yields for divergent,
inviscid, low-frequency, long free waves

(Hpn) x+fH}>y— (f‘/g) pt= Qrevrerremenncennen (4)
Upon substituting for the pressure, p=F (x)#(y
+ct), (4) yields

EF)"+ (/) HF- (/) F=0----orooe ®)

where the ‘prime’ means the derivative with
respective to x and ¢ is the phase speed.
Equation (5) with the depth profiles given by
(2) vields the following eigen value problem
for the frictionless eigenfunction F (x) :

(a(x+L)F/)Y+uF,=0 -L,<x<0 6-1)
F,"-A"F =0 osx<L,  (6-2)
(B(x-LYF,) +u,F.=0 L $x<L, 6-3)
F,+ (f/c)f,=0 at x=-B, (7-1)
F,=F_ at x=0 (7-2)
F/=F at x=0 (7-3)
F =F, at x=L (7-4)
F '=F,/ at x+L (7-5)
Fy+ (f/c)F,=0 at x=B, (7-6)

where ¢ =f/c-f'/ga, m=1f/cf/g8, 2*={/gHL,
a=H,/L,, ﬁ=‘Hc/(Lz"Lm). Here, F,, Fm and
Fz
respectively, the shelf 1, intervening region,

represent the eigenfunctions over,

and shelf 2. 2 is the reciprocal of barotropic
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deformation radius, and « and 8 are the slope
coefficients of the shelves ! and shelf 2,
respectively,

The solution of the above eigenvalue prob-
lem leads to a dispersion relation that aloows
the determination of phase speed c, as
follows :

exp (-m,L,) + (Js (2b,) J, (2b,) /T, (22,) Jo (22,) )
- (f/e={en/by} - (J,(2,) /T4 (2b)})
- (f/e—{m/b) - {J.(@by) /T (2b)))
<R+ {w/ay) - (Y, (2a) /Y, (22)))
- A-{m/a) - (Y, (2a,) /Y, (22,)))
-exp (-m,L,) + (Js(2b,) Y, (2b,) /J,(2a,) Y, (2a,) )
- /e (/b)) - {J:(2b,) /04 (2b)}]
- (f/c—{p/bs) - {Y,(2b) /Y4 (2b,))]
< R+ {m/a) - {Y,(2a,) /Y, (22))))
< QR-{m/a)} - {J,(22,) /] (227)})
-exp (-m;Ly) - (Y, (2b,) ], (2b,) /Y, (2a,) Ji(2ay))
- (f/c-{u/by} - {Y,(2b)) /Y, (2b)})
- (f/c-{pa/bi} - {J:(2bs} /J4(2D4)} )
- A+ {m/a,y) - {J.a) /i (22)}))
- (- {m/a)) - (Y,(2,) /Y, (22))) )
+exp (-m,L,) - (Y,(2b,) Y, (2b,) /Y, (2a,) Y. (2a,) )
- (f/c—{e/b} - {Y,(2b)) /Y, (2b))})
- (f/c~{m/bs} - {Y,(2b2) /Y, (2by)})
- R+ {m/a)) - {J:a)) /] (2a,)})
« (A-{m/a)) - {J:(22.) /]e(227)})
—exp (m,L,) - (Jo @b,) Jo (2b,) Jo (2a,) J, (22,) )
- (f/c—{e/bi} - {J:(2b)) /T4 (2b1) )]
- (f/c~{p/bs} - {J,(2bs) /T4 (2b5)))
- (A-{m/ay) - {Y,(2a,/Y,(2a,)}]
< (A4 {m/a)) - {Y,(22,) /Y, (2a))})
+exp (m;Ly) « (Jy(2b)) Y, (2b) /J4 (22)) Y, (23,) )
- (/e {m/bi) - {7:(2b) /1. (2b)])
/e~ {pn/ba) - {Y,(2b)) /Y4 (2b,)})
- R-{w/a) - (Y,(2a)) /Y, (22,))))
- (R + {m/a,) - {J.(2a,) /], (2a))} )
+exp(m,L,) - (Y,(2b,) ], (2b,) /Y, (2a,) Ju (22,) )
- (/e {p/by) - {Y; @b,) /Y (2b)))

42—

~Ls =By Le

« (/e {m/bs} - (0, (2b,) /T4 (2y)) )
*(-{m/ai} - U:(2a)) /] (22))))
* R+ {m/a,) - {Y,(22,) /Y, (2a))})
—exp (m,L,) - (Y,(2b,) Y, (2b,) /Y, (2a,) Y, (2a,) )
- (/e (/by} - {Y,(2b) /Y, (2b))})
* (/e {p/by)} - {Y,(2b) /Y, (2b))})
s A-{w/ai} - (J:(2a) /10 (22)))
s QR+ (/2 - {7,220 /10 (220))=0- (8

where a,= (L)*%, a,= Ce(l-L )%, b=
(B, +L)%, b, (4(By-L))%, and ] and
Y, refer to the mth order Bessel Functions
of the 1st and 2nd kind, and A, g, g are
given above,

When L goes to infinity as shown in Fig,2
(a), the dispersion relation (8) reduces to

2
82 Lt

infimtely wide

(a)

2
-l -8 T. 6 L

x
w sneif

(B)

Fig.2. Schematic representations of the cross-

shelf sections for (A} two shelves with
an infinitely wide intervening region,
and (B) a double shelf (two adjoining
shelves).

(0. @by) /J4(2a,))

- (£/c= (/b)) - J,(2b)) /Js (2b))})

- (3-{m/a)}) - {Y,(22,) /Y,(2a))})
-(Y.(2b)) Y, (2a,))

* (f/c- (/b)) - {Y,(@2by) /Ya(2b)})

- QR-{m/ai} - {J,(2a))/]i 22))}3)
X ((Js (2bs) /] (225} )

- (f/c={m/bs} - (0,(2b2) /30 (2b2)})

- A-{m/a;) - {Y,(2a,) /Y, (2a))})
-(Y,(2by) /Y. (22,))

» (f/c-{en/bs} - {Y,(2by) /Y4 (2b)) )
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- R-{m/ay) - Ul(zaz)/Jn(zaz)}]J=0"'(9)

This shows two independent sets of coastally
which means that if the
shelves are apart sufficiently enough, two sets
of coastally trapped waves do not interact
with each other,

trapped wave,

as for an exponential
topography (Pang, 1992) .

When L goes to zero (double shelf case)
as shown in Fig.2(b), it yields

a,xJa (2b1) Jo (2b2) Yo (22,) Y, (22,)

* (f/e= (/b)) (U, (2b)) /Ju (b))} ] - (£/c-{ea/b3)
{7, 2b2) /34 (2b)}]
-a,n ]y (b)) Yo (2b) Y, (22,) J, (22,)

- (f/c={e/by) {3, (2b)) /34 (2b)}) - (f/c~{ea/ba)
{Y,(2b) /Y, (2b) })
“aynY, (2b)) Jo (2b) 1, (22,) Y, (22,)

« (f/e={m/b:} {Y,@b)) /Y, (2b)}) - (f/c- (/by}
{J: @b /74 (2b2) })
+a14Y, (2b,) Y, (2b) Js (2a,) J, (2a,)

* (/e (/b {Y, (2b,) /Y, (2b))}) « (/0= {pa/y)
(Y. (2b)) /Y4 (2by)})
—a.4J0 (2b)) Jo 2b) Y, (22,) Y, (2a,)

* (f/c= (/by} (J1 (b)) /74 (2b)}] - (£/c-{pna/ba)
{7, (2b,) /7, (2b2) })
+aymJy (2b,) Y, (2b,) Y, (2a,) J, (22,)

- (f/e={e/b} (0, (2b,)) /74 (26)}] - (£/c~{e/by)
{Y,(2bs) /Yo (2b,)})
+a.4Y, (2b,) Jo 2b,) J; (22,) Y, (22,)

- (f/c={ea/0,) {Y; @b)) /Y4 (b))} - (/¢ {pa/by)
{J:(2ba) /74 (2b,)})
~a,Ye (2b,) Yo (2b,) J, (2a,) J, (22,)

- (f/c- (/by} {Y, (2b,) /Y4 (2b,)} ) - (£/c- {ps/bs)
(Y, (2b) /Y4 (bg) } )= 0ereererereveerenns (10)

The dispersion relation implies that the two
sets of coastally trapped wave shown in (9)
are dependent on each other, Therefore, the
two sets of waves are dependent on each

other if two shelves are close while they

—43-

become independent single shelf waves if two
shelves are separated far enough. The phase
speeds ¢ of two sets of waves range in ga/f)
c>0 and gB/f{c{0, respectively, For the range
of ga/f)c)0, the set of waves propagate
southward while for the range ga/f{c{0, the
set of waves propagate northward.

The dispersion relation looks complicated but
its essential characteristics are the same as
for a non-divergent case (Pang, 1992), except
the 1st modes, It should be noted that a lin-
ear topography is adapted in this paper for
The
(exponential or linear) bottom shape itself

analytic solutions to a divergent case.

does not make any basic difference. In the
the phase speed of first
modes shows different characteristics from

that of the rest modes, It is comparable to

divergence case,

the phase speed of gravity waves,

Table 1 shows phase speeds for 3 different
cases of bottom topography: (A) a single
shelf adjacent to an infinitely deep water
region, (B) a single shelf adjacent to a region
of the finite depth equal to the greatest depth
of shelf, and (C) a double shlef. The
greatest depth of shelf are 100m for all cases
and the cases (A) and (C) have 2 sub-
cases: a non-divergence case and a
The case (B) does not

non-divergent case,

divergence case,

include a since the
effect is essential to allow sea
level fluctuations at the edge of shelf K Fig. 3

shows schematic representations of the cross-

divergence

shelf bottom topography for the cases. From
table 1, we can see 2 divergence effects.
One is for the Ist modes, For non-
divergence cases, the phase speeds of the 1st
modes are propotional to shelf width, which is
a characteristics of continental shelf waves,
However,

For divergence cases, the phase

speeds of the Ist modes vary inversely with
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which yields two independent sets of waves as

follows :

M/M, = 121/L,(1¢]-m) or M:My=121/
(L"Lm) (F2]~mm) , ereerevmerommremssomsineennens
since M, =2L,a,M, and M3x=2(14—Lm)a,M.,
For non-trivial, a, and a, must be negative,
which give the positive and negative phase
speeds, respectively.

When L goes to zero (double shelf case)
as shown in Fig.2(b), ity yelds

M Ms—a,M,M~a, MMy =0 --c-eeerrees

This can be changed as 1-aM/M;=a,M,/M,=
p, therefore,

MM, =p./2L, if a,<0, a0 (21-1)
MM, =p:/2(L.-L) (p-1) if a0, a0 (21-2)

where p,=1-a,MM,; and p,=a,M,/M,. They
are dependent on the both shelves through p.

In this case, the dispersion relations (17),
(18), (21) include continental shelf waves,
Kelvin waves, and Poincare waves, while in
the preceeding case of low-frequency, only
continental shelf waves and Kelvin waves are
included, The confluent hypergeometric func-
tion is converted to various different func-
tions, such as Bessel Function and Legendre
Function,

cover whole ranges of coastally trapped

for some limiting cases, It can

waves, However, since confluent
hypergeometric function is still under
development and computer programming of
this function is extremely complicated,
computation using the above equation is not

practical yet,

Eigenfunctions

~46-

The eigenfunctions for the double shelf are
as follows :

F= (F, in the shelf 1
[F, in the shelf 2
¢ A - (u,/a,T)) - (Jo(2a,) Y, (2a,) -], (2a,) Y,
(2a,) )
Fi= |X(-G.Ju(2{u, x+L) }¥)+G,, Y, (2 {u, (x+L
D)) for gB/f{c{0
LA - (W20, x+L) )} )= (T/Ty) - Yol2{u, (x
+L)}*%)) for ga/fHe0
(A - (Jo(2{u, (x-1)) %)~ (T/Ty) - Yo(2{ua (x-
L)}#4) for gg/féc{0
F.=| A- (w/a,Ts) - (Js(2a,) Y,(2a,) -], (2a)) Y,
2a)))
[ X(-G2aJo(2 (us (x-L2) )+ G Yal2{u (x-L

21¥#)) for ga/fHcH0

where A is a arbitrary constant and
Gu=(f/c) - Jy(2b)) - (u,/b,} - J:(2by)
Gn=(f/c) - Yo(2b)-(un,/by) - Y,{2b))
Gu=(£/c) * Js(2bs)- (u./by) - J, (2by)
Gu=(£/c) - Ya(2b))~ (un/by) - Y, (2Dy)

T,=((u,/a,) - J,2a)Y,(2a,)-(u,/a,) - J,(2a,)Y
1{2a))) - Gy
-lw/a,) - Y,(2a,) Y, (2a,) - (u,/a,) - Y,(2a)
Y,(2a;)]) - Gy,
T.=((w/a) - J,(2a,) Js(2a,) - (u/sa,) - Ju(2a,)
J1(22,)) - Gy,
~-((w/a,) - Y,{2a)) ], (2a;) - (u./a,) - Y,{(2a,)}],
2a))) - Gy
Ty=(-(w/a) - Y,(2a,) Ju (2a,) + (u,/a,) - Y, (2a
I)Jl (Za,)l - Ga
-(-(u/a)) - Y,(2a)) Y, (2a) + (us/a,) - Y, (2a,)
Y,@Qa))] - Gn
Ti=(-(w/a)) * J, (2a,) ]« (2a,) + (u./a,) - J, (22
] (2as)) - G
-(-(w/a) - Ji{(2a) Y, (22,) + (u/a,) - Ji(22)
Y, (2a,)) - Gy
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2.0

(a)
KELYIN  MODE

-------------- DL c3w Moogr—><
BT CSw MOD

oD.

»2.04

AMPLITUDE
{MON-DIMENSIONAL UNIT)

7 csw moot
-2.0

-400 -200 [ 80
DISTANCE (Km)

Fig.4. The cross-shelf amplitudes of the first
3 eigenfunctions of shelf waves
propagating (A) into paper
(northward) and (B) out of paper
(southward).

Fig.4 shows the amplitudes of the first 3
eifenfunctions across the shelf : (A) for gg/g
<c{0 and (B) for ga/f)c)0. Thus the sets of
waves in Fig.4 (A) and (B) propagate into
paper along shelf 2 and out of paper along
shelf 1, respectively. The Ist eigenfunctions
have their maximum amplitudes along coast
and decay exponentially across the whole
shelf. They have no node, like Kelvin wave
over flat bottom., They appear only when
horizontal divergence is allowed, The rest
eigenfunctions are continental shelf waves,
The 2nd modes are the 1st modes of
continental shelf waves, and so on,
Continental shelf waves oscillate over one
shelf and extend in an exponential decay over
the other shelf, Therefore, they have nodes
across the shelf. The Ist continental shelf
mode has one node and the next mode has

two nodes, and so on,

Orthogonality of eigenfunctions

Upon substituting for the pressure, p= 3

n=-co

Fn(x)¢n(y+cnt), the governing equation and

-47-

boundary conditions for a double shelf

topography are as follows :

(@ x+L)F, 'Y+ (-2la(x+L) +fa/c + (w'-f})
/) - F =0
~Lidx<0 @2-1)
(B-LIF, 'Y +(-0'8(x-La) +£8/c + (v~ g)
- Fp,=0

0L, (22-2)
Fy+ (E/c)F,, =0 at x=-b,  (23-1)
F,=F, at x=0 (23-2)
F. =F,’ at x=0 23-3)
Fy'+ (E/c)F, =0 at x=B, (23-4)

Multiplying the equations (22-1) & (22-2) by
Fm and integrating them across the shelves
yields

0 B2
{,, FinlaG+L)F Yax+ |
-B1 0

F,n(8(x-L,)

Fp Vdx+Ua/c, + (@0 /g) - {* FF axt(e
-B1

lmFln
2. Bz T o
B/c + (w-f)g) - + So Fy Foppdx—0'a - S (x

-Bl

1m™ in im” In

+L)F, F, dx-0'8 - S:z &-L)F, F, dx=0

By integration by parts and using the
bounary conditions,

aL,F,, OF,’ 0+ (fa/c,) -B,+L)F,_ (-B)
F1,(-B)) +AL.F,, (O F,, (0) + (€8/c,) (-B,+Ly)

0 — B2
Fou(BOF, ()= a®+LOF, F, ax-{ "
(L) Fy Fop it Ua/e,+ (@' /8) -

B2
FlaFiadx+ (8/c,+ '-1)/8) - | ° FyF ax-0°
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F

1m” 1n

0
a- |
-Bl

FlmFlndx= ) SIS TIPSR S (25)

B2
(x+L,)F, F, dx-£8- Su (x-Ly)

Interchanging m and n and substracting
them yields

aL, - (Fp OF,) O-F, OF, 0))+AL: -
(Fp (O F ) (0 —Fa (0) 'Fy 0+ (/e A/c,, - (a

’ = B)F, (-B

JF,, B, +8@Li-L ) Fyp (B)Fy, (B2 I=0. o (26)

The first two terms are zero by the bound-

ary conditions, Therefore, when m is not n,

F, F. dx+8

im” 1n

B2 B2
S 0 FZmFanx—HFan 151

.......................................................

To see if (27) does not hold when m=n,
suppose to the contrary that

Multiplying (22-1) by F,, and (22-2) by F,,
and integrating them across the shelf yields
the following equation by the relation (28)

S

L)F,,Vdx-(e/e) |

0

F,, - (B&-

ryr Bz
Fln . [a(ax+L,)Fm] dx+ Su

-B1
F *dx+ (f/c ) - HF *|B
B 0 X Cn n Bl

0.
Integrating by parts and using the boundary

conditions (23) leads us to

[ R s @) - Fdx=0, o 29

Since the integrand HF *dx+ (f*/g) -Flis
always positive, the assumption (28) creats a
contradiction. Therefore, the asumption (28)
does not hold when m=n_ This leads us, with

(27) . to the following orthogonality condition.

aS° FyoF dx+ﬁSBzF F,, dx-HF ,F, |
-Bl 1m' In 0 2m* 2n' mt al-Bi

0 B2
af | Fudx+s So Fpdx-HF, %,

This proves that the eigenfunctions of
coastally trapped wave over a double shelf
are also orthogonal, From the orthogonality of
eigenfunction, the method of -eigenfunction
expansion is possible for the forced problem.
(The frictional eigenfunctions are not proved
to be orthogonal, which is a difficulty in using

the frictional eigenfunctions)

Discussion and conclusion

for a single shelf adjacent to deep open
ocean, the divergence effect might not be
important, It depends on what kind of phe-
nomenon we are looking at, For wind driven
coastal motions, the divergence effect
becomes important only when the shelf width
is comparable to the Rossby defromation
radius. However, for a double shelf, which

allows sea level fluctuations at any place
across channel, it is always important,

The divergence effect adds Kelvin wave to
the solution of coastally trapped waves. As
over a flat bottom, the amplitude of Kelvin
wave has its maximum and decay
exponentially away from coast. Thus it has no
node across the shelf, Its phase speed is
modified by bottom slope, but essentially

comparable to that of gravity wave, As a
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shelf is
shallower, and therefore the phase speed of
This makes that the
phase speed of Kelvin wave vary inversely
with shelf width. On the other hand, phase
speed of continental shelf waves is propotional
to shelf width,

As for non-divergence case, there are also

is wider, the averaged depth

Kelvin wave is slower,

two sets of waves for divergence case. Each
set include on Kelvin mode and infinite modes
of continental shelf waves. The phase speeds
of one set are positive and those of the other
set are negative, The phase speeds of the
Kelvin waves are much faster than that those
of the continental shelf waves, The phase
speeds of the shelf waves are slower for the
higher mode, Thus, the Ist modes, which
have the maximum phase speeds, are the
Kelvin waves, and the 2nd modes are the 1st
modes of continental shelf waves, and so on,

The nth modes have n-1 nodes across the

shelf, All the waves propagate with shallow
waters to the right in Northern Hemisphere.

The two sets of waves are independent if
two shelves are apart sufficiently and de-
pendent on the geometry of bo£h shelves if
two shelves are close enough. The frictionless
eigenfunctions of coastally trapped waves over
a double shelf are proved to be orthogonal. It
makes the method of eigenfunction expansion
to be possible for the forced problem.

The dispersion relation is extended to high-
frequency and short waves, Even for the
extended case, the basic characteristics are
preserved. The dispersion relation covers
some limiting cases, such as low-frequency
and long wave case. The extension is neces-
sary for studies of reflection and scattering,
however,

etc.. The practical computations,

are not inaccurate yet since confluent

hypergeometric function is not fully developed.
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