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The Steepest Descent Method for Constrained Minimization Problems

Kim, Do-hyun*

Summary

In this paper, we investigate the solution of constrained minimization problem for some given
conditions and we establish the convergence of the steepest descent method to the least squares

solutions of minimal norm,
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Introduction the other hand, one may look at the problem
from a different angle,

The operator equation Ar=y where A is a In this paper, we investigate the solutions of
mapping on some space into another has a constrained minimization problem for some
solution if and only if y is in the range of A, given conditions, and we establish the
This embodies the notion of a solution in the convergence of the steepest descent method
traditional sense: it is an ideal situation. On to the least squares solutions of minimal
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norm,

Let X, Y and Z be (real or complex) Hilbert
spaces, and let A be a bounded linear
operator on X into Y. Unless otherwise
indicated, (-, - and | -] refer to the inner
product and the norm, respectively, The linear
equation (1) Az=yp for y€Y may or may not
have a solution depending on whether or not y
is in R(A), the range of A, and even if yER
{(A) the solution of (1) need not be unique, In
either case, one can seek a least squares
solution, i.e., a solution which minimizes the
quadratic functional f(x)=1{ Az-y|% Such a
solution always exist for all y€Y if R(A) is
closed. If R(A) is arbitrary, a least squares
solution does not exist for all ¥€Y. however it
exists for all yER(A)PR(A)+

For any subspace S, we denote the or-
thogonal complement of S by St and the
closure of S by §. Let D(A), R(A), and N
(A) denote the domain, the range and the
null space of a linear operator A,

respectively,. It is well known

X=N(A)BN @A)+

Y=N{A*@N A"+

{R(A)}+=N(A*, R(A)=N(A)+,
(‘;\*) L

R(A)=N

For a given y€Y, an element u€X is called
a least squares solution of the linear operator
equation Ax=y if |Au-y|< |Ax-y| for all x&
X, Among least squares solutions an element
v of minimal norm is called a best
approximate solution of (1), For each yER
(A)DR (A,

lution of (1) is a nonempty closed convex

the set of all least squares so-

subset of X and hence has a unique element v

of minimal norm, The generalized inverse A"

of A is the operator whose domain is D(A") =
R(A)®R(A)L and A'y=v, where v is the
unique best approximate solution of the
equation (1). If R(A) is not closed, then A°
is only densely and unbounded, If u is a least
squares solution of (1), then u=A‘y+ (I+A'A)

z, for some r,€X.

2. Least squares solutions.
Existence and Uniqueness of the
regularized solution

Let L be a bounded linear operator from X
into Z. We assume that the range R(L) of L
is closed in Z, but the range R(A) of A is
not necessarily closed in Y.

We consider the following minimization
problem;

(2) For a given y in D(A?), let S,={u€X :
| Au-yi y=inf{ Ax-y|, ,z€X} . Then the problem
is to find we&S, such that {Lwiz=inf{jLu!z:u
€Sy} .

We state the conditions under which the

solution of the problem exists and is unique.

Proposition 1. The constrained
minimization problem (2) has a solution for
every y€D(A") if and only if LN(A) is closed.
proof : Since for any uESv,u=A‘y+v for
some VEN(A). the problem (2) is equivalent
to inf {|Luj ZuELSy}=in.f{]L(A'y+v)l tvEN
(A)) =inf{tu] :u€LS,}. Note that LS, is a
translation of the subspace LN(A). Thus, we

can easily check that the proposition holds.

Proposition 2. In Proposition 1. there
exists a unique solution if and only if N(A)N
N{L)={0}.
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proof : (<) Suppose that N(A)NN(L)=
{0}, Then since N(L,)={0}, where L, is the
restriction of L onto N(A). there exists a
unique w,E N(A) such that |Lw,+L{(A2)|< !
Lz,+L(A’z) | for all x;€N(A). It shows that
there exists a unique v=A'z+w, such that |
Lw]< {Lx| for all zES,.

(=) Suppose that N(A)NN(L)={0}. Then
there exists at least one w,EN (A)N N(L)
which is not zero. Thus, |Lw|=|L(w+w,)]

<}Lx| for all z€S,. Hence w is not unique,

Theorem 3. An element weX is a so-
lution to the constrained minimization problem
(2) if and only if A*Aw=A*y and L*LweN
(A),

Proof : Let w&Sy such that |Lw}z< |Lujz
for all uESy. Then A*Aw=A*y is obvious,

For any u€Sy,u=A'y+v for some vEN(A) .
Since |Lw| =inf{iLu} : u€Sy), |L(Ay+w)]|
S |L{A'y+u) ! for all u,EN(A), i.e,, |L(A%Y)
+L(w)! <IL(A*p)+L(uv,)] for all u,€N(A)—
(*x).

Now consider the restriction of L onto N
(A), denoted by L,. Then (*) induces that |
Lyw)+LAW €1 Ly)+L(AY)! for all u
/€N (A) . Since L has a closed range, L, has
also a closed range. It shows that w,=L} (—
L(A] )). Consequently, Ly(w)+L(Ay =L (w,
+AYER(L,) .

Thus for all w€N(A), Ly(w)ERL,) and

Cau)LywWi}+LAY))={LsW), LAy+w,))
=(L (). Liw,+A%y))
= (u,,L*L (w,+A"y))
= (u,,L*L (w)) =0.

Namely, L*L(w)EN(A)L

We define a new inner product in L :

(u,v)=<Au.Av)y+<Lu .Lv}, for u,veX

We denote the space X with the inner product
T-,-) by X.

The solution w is the least squares solution
of X;-minimal norm of the equation (1). Let
Al denote the map induced by y—w and call
it the weighted generalized inverse of A,

The operator equation (1) is said to be well
-posed (relative 1o the spaces X and Y) if for
each y€Y, (1) has a unique least squares
solution of minimal norm which depend

continuously on y. Otherwise the equation is

said to be ill-posed. When the range of A is
closed, the minimization problem is well
posed., Hence our interest is in the case that
the range of A is not closed and hence the
problem is ill-posed . Instead of solving this ill-
posed problem directly, we will regularize it by
a family of stable minimization problems.

Let W be the product space of Y and Z with

the usual inner product :
W=YxZ

{niz)}, vz dw=Ly, ¥y + <z, 2,02 for y,.y,
€Y and z,,2,EZ,

For a)0. let C, be a linear operator from X
into W defined by C,x=(A,, ~/a Lx) for z€X,

We denote by U, the unique best
approximate solution of the equation C.x=7
for each a0 where §=(y,0) in W_ That is, U
«=Cs 7. Let us write J (x) =| Az~y! *+al Lz

I 2

Theorem 4. Let a)0. An element r, in X

14

minimizes the quadratic functional J(x) if and
only ifC,C,x=C.¥
Proof : Refer to Song
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izl and |xi, are equivalent if AN(L) is
closed. In addition to assuming the existence
and uniqueness of the solution, we assume

that AN(L) is closed throughout the paper.

Theorem 5. For a0, let U, be the
unigue solution of the operator equation (2),
Then lim,_gU,=Ay

Proof : Refer to Song.

3. Convergence of the steepest
descent method

In this section, using the steepest descent
method, we find approximate solution U, of
the regularized operator equation C, C,x=C, 7.

We prove the convergence of the steepest
descent method to a solution of C.Cax=C. 7.

Let z,&£X be an initial approximation to a
least squares solution U, of the equation (3)
Cox=7. 7T=(.00EW,

We show that the method converges to the
unique solution of C,C,x=¥ with minimal norm

if and only if x, is in the range of C,
Let
Jo(@) =1Az—y{"+aiLlx}® for a0,

The steepest descent method for minimizing J,
(z) is given by (4) x,,,=x,—a, grad J,(x)
where «, is chosen to minimize J,{(x . ).

It is easy to show that grad J, (x) = (A*A+
al* L)z—A*y, so that the algorithm (4) may
be written in the form

Ty = I a7,
where 7, = (A*A+al*L)z,—A* and

IAK IAK
[Coal®

ST TR I F +al L °

Note that if e =0 for some k, then x, is a
least squares selution of (3). Also if Cr,=0,

then r, =0 since C, is one-to-one cn the range

of C, . Thus we shall assume that Ty =f=0 for

all n.

Theorem 6. Tie sequence generated by
steepest descent method defined by (4)
converges to an element v<S = {z ! inf|C z~7
|=1C,z—yl}. if and

only if 1,&R(C, ) for any initial approximation

) - ..
{x,} converges to u,

z,EX |
Proof. We first show that (x} is a
minimizing sequence for any initial

approximation r, X, Using (4),

Jeps) =14z, —yl *+ai Lz gyl*

=]Az,—a A7~y +al Lr —a Lr|?

Thus J,(x,,,) S J.(z,) for all n,
equality holding when 7, =0.

with the

We obtain recurrsiveiy,
n | 7l 4

E TAZT*+aiLri®

J,, (In+]) ‘_‘Ja (o) —

Note that since J, is bounded below by zero,

o« r4
pa B
i=Q IAri! 2+a| Lril ¢

_ -3 Irll
= + (o
x=0|ca71
Moreover,
I e g 17t
lL.J |7 ’ < E
ICaI =g i=ol Caflll

Hence,Eﬂ} | 7;i%{eo_ Therefore, r,=C.C.x,—

-134-



AR N4 Fao] :#3 Steepest Descent W% 5

i —
Cq 70 as n—oo,
Now we show strong convergence of {x,}.

b
From (4) we obtain recurrsively, z,,,=z-32
i=0

m-1
o7 and for myn,x,—x,=—37 ar,. Since r;=
i=n

(A*A+al*L1z-A*v€R(C, ) for all i,

z,—1,ER(C, ) for all m and n.

There exists a positive number 7 such that

Mlr,—za '€ <C.C, (xp—zn ),

T =1C, Tz ) *
On the other hand,

Cy Colzp—z,), el I
[(Cy Couxpy—Cy T.xp—2)i+I<
Co Cox,=Ci T.zy—x,10] <

Luc cap—ci m+ic, ca-
C, THC,lx,—1,) |
But {iC,(z,—x,)1} is bounded, say by M,

since r,—0 and C; has a bounded inverse on

.
(:3

R(C). Thus, 7lz,—zl%s M y1c] corp—cC
71 +1C, Cx,—C, 71} . But the right-hand side
of the above inequality goes to zero as m, n
—<o, which shows that {z)} is a Cauchy
sequence, and hence converges to an element

veX fx—u, and  lim J,(x,) =], () =inf {J,
n—oa

(z) 1 z€X ), Note that u is any least squares
solution of the equation (3). Finally we show
that (zn} cenverges to the least squares so-
lution u, of minimal norm if and only if r,&R
Ce).

n-1

then r,=z,~33 ar€R(C, )
=0

If zE€R(C] ).

since r,€R(C, ) for all i,

Therefore since R(C; ) is closed, {z,}

converges to a least squares solution u R (C

=) and C} 7 is the unique least squares so-
lution in R(C; ),

Thus {z,) converges to C} 7.

Conversely. if z,&R(C; ). then r,=z,+x,

where x, €R(C; ) and z; ER(C, )+ =N(C,).
s n

Hence X ,,=z,—32 a7 +Py(cq%, where
i=0

PN(Ca) denotes the orthogonal projection or N
(Co.

n
But x,—32 a7; converges to C} 7,
i=0

Thus {z;} converges to C,¥+Py cyTo.
This completes the proof of the theorem.

Remark. In view of the above theorem.,
and Kantorovich’'s error estimates for the
steepest descent method for bounded linear
operator (3}, it follows that for any r,&€R(C

M—m)n
M+m’

z,.C < M|zl|® rER(C, ) and 5 is constant,

-
a

). 1z,—C; #l< 8¢ where m]z}’<<C,
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