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1. Introduction

For an operator on a Hilbert space the con-
cept of numerical range was introduced, for fi-
nite dimensional spaces, by Toeplitz in 1918. No
concept of numerical range appropriate to
Banach spaces appeared until 1961 and 1962,
when distinct, though related. concepts were in-
troduced independently by Lumer and Bauer. In
terms of Hahn—Banach theorem, Bauer defined
the concept of numerical range on a finite
dimensional Banach space, but the concept that
he introduced is available without dimension.

Paschke (1973) defined a pre—Hilbert C*
—module. a right module over a C*-algebra B
which possess a B-valued inner product respect-
ing module action. Under this inner product.
Yang (1984) defined a spatial numerical range of
a Hilbert C*—-module,

obtained its spectral and topological properties.

an operator on and

K

A

Berberian (1974) proved that for any element
a of a unital C*-algebra A, there exists a
normalized state f on A such that f(a*a)=lla*a
. In terms of this result and C*—valued inner
product, we define the new concept of numerical
range of an operator on a Hilbert C*—module,
and obtain its spectral and topological prop-
erties. and application of our concept to a unital
C*-algebra.

numerical range is connected. but not closed.

In particular. we give that our
Throughout this paper. we let B be a unital C
dual the Hilbert

B-module with B-valued inner product <>,

*—algebra. B’ its space, X

S(X) the unit sphere of X ie., the set of all x €

X such that Ixlix=l<x, x> =1, and P the
set of all positive linear functionals (normalized
states) on B ie. P={ ¢ B :fle)=1=1fI].

-where e denotes the unity of B. We also denote

the action of B on a right B—module X by (x.b)
— xb (x € X. b € B). A Hilbert B—module X
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is assumed to have a vector space structure over
the complex numbers C compatible with that of
B in the sense that A(xb)=(Ax)b=x(Ab) (x €
X.b € B, 1 € C) We let B(X) the set of all
bounded linear operators on X, and A(X) the set
of all bounded linear operators on X which
possess bounded adjoints with respect to the
B-valued inner product. Without risk of confu-
sion, we denote the operator norm on B(X) by
[l

II. Numerical ranges and spectra

From now on we let 7 be the natural projec-
tion of XXB” onto X, and 7 the subset of Xx
B’ defined by
ro={xf) € SX)XP:f(x, x)=1.

By Berberian (1974). = =@ if X##. for each {
in B" we define {* by {*(b)=f(b*) (b ¢ B). It
is abvious that for each (x.f) ¢ # , (xf*) ¢ =
p. (xf1) € m, where f;=({+{*)/2 1s self-

adjoint, and

7, CoX)=1xf) e
1.

S(X)xS(B’)  f(xx0)=

DEFINITION 2.1. The numerical range W(T) of
an operator T in B(X) is defined by
W(T)= {f((Txx)) : (x.f) € m |,
and the numerical radius @(T) of T is the number
w(M=sup {| A | 14 e WY,

This generalizes the classical concept of
numerical range on a Hilbert space. since in
case B=C a Hilbert B-module is a Hilbert
space. It is obvious that for any T. S in B(X)
and a, B € C, W(ia T+3S)Ca W)+ 23
W(S), W(T) includes the point spectrum of T,
W(T*)=W(T) for each T ¢ A(X), and for each
T in B(X), WDHSW(T)SV(T)CTV(B(X), T)
where Wg(T), V(T), and V(B(X), T) denote the

B—spatial numerical range, the spatial numerical
range, and the algebea numerical range of T
respectively (see Bonsall and Duncan (1971),
Yang(1984)). From these facts it is obvious
that @} is a seminorm on B(X), and «(T)S 1l
T for each T in B(X).

LEMMA 2.2 Let T be a subset of mp such that
its natural projection m{T[') is norm dense in S(X).
Then for each T e B(X).

(a) inf {(| {+aTj—-1)/a:a)0}
= sup{Re f({Tx,x>):(x, e},

() sup (kg Hlexp(aT)ll ia>0}
= sup{Re f({Tx,x):(x,f)e T}

PROOF. (a) Let #=supiRe {(<Txx>):(xf)e
T'l. By Bonsall and Duncan(1971), we have #
Smaxi{Re 2 :i¢e V(BX) (T)=

inf[—l—(lll +aT|—1) : a)0} :.lxin(; .i_
0+

CllT +aTj —1). (%)

It is obvious when T=0, so we assume that T
#0. Choose a such that 0<a<IIT) . Let x
€ 5(X) and €50. Since 7 (I') is dense in S(X),
there exists (y.g)& I' such that lIx—y il (. We
have Re g(<Ty. y))<#< 1TH and so lI(I-a
Ty i xZRe g(<I-aT)yyy)=1— aRe gkTyyd)
21— a #50. Therefore I (I-aT)x Il x=l—a u
—INI—aTi €. Since e is arbitrary, this gives
I(I-aT)x,2l-a #. and therefore II{I—a
Tixlhx&(l—a #)1xlx (xeX). If we replace x
by (I+ aT)x. this gives

1
Il (1 +aT)xHx§1_n{p

(xeX), and so
M1 +aTl < +ai T2/l —ap) ,

HCl—a2T)x|ix

Therefore
(It +aT| = 1)/a< (u+ali T2)/ (1 -
aft) and this with (*) completes the proof.
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(b) Let #=sup {Re f(<Tx. x):(x.D)e T'}.
Then by Theorem 34 (Bonsall and Duncan,
1971), #<supiRea : Ag (B(X)T) =

1 1

sup { — gllexp(aT)li:a ) 0f = Ll-:)z -

gl exp CaT) |l

The case T=0 is obvious, so assume that T #o0.
Let 0¢a< 1 TN ™" €50 and x € S(X). Since n{(
I') is dense in S(X), there exists (v.g) e ' such
that il x—y Il x(e. We have Re g(Ty. p)su=s
ITI and so I(I-aT)y il x=Re g((l—\a Ty.y»)
Re g((Tyy»)2l1—a rzZ1—a I TI>0
Therefore N1(I-aT)x Iy21—a g~ i l—aT Il €

=]—a

. Since € is arbitrary this gives | (I—a Tixllx=
l—ea # and therefore II(I-a T)x i x=(l—a )
xllx (xeX). By induction we have (*) |I(I-
aT)x il x2(1~a #)" I xlix(x e Xn=1,2, oeeoe ).
We have 1—a £/ny0 for all sufficiently large n.
Therefore replacing @ by a/n in (*) and let-
ting n — oo, we obtain || exp(— a T)x |l x Zexp(—
a #)lixllx, Taking x=exp(aT)x, we get |l
exp(a T) Il Sexp(a #) and so sup l%log Il exp(a
T)i : e>0l S #. Hence our conclusion holds.

THEOREM 2.3. Let T be a subset of @, such
that its natural projection w(T) is norm dense in
S(X). Then for each T *B(X), T Hf(<Tx0): (x.0)
e ' =V(B(X).T) where <o E denotes the closed

convex hull of a set E.

PROOF. By Lemma 2.2 and Theorem 25
(Bonsall and Duncan. 1971). we have sup |Re {(
(Tx,x>) : (x.f)e 'l =sup|{Re A : ac¢
V(B(X).T){. By replacing T by appropnate sca-
lar mulitiple of T, using the fact that V(B(X). T)
is a closed convex set. and Lemma 4 (Niestegge,

1983), our proof is complete,

COROLLARY 2,4 (Bonsall and Duncan, 1971).
Let T be a a subset of {(xx*)e S(X)xS(X'):

x*(x)=1| such that its natural projection n(T') is
norm dense in S(X). Then for each T € B(X). &&
x*(Tx) : (xx®) e T'f = V(BX).T).
COROLLARY 22,5, For each T € B(X). we
have
(a) co W(T)=V(B(X).T)=co V(T),
(b) @(T)=sup || A} A eV(BX.T)=
v (T).

COROLLARY 2.6. If X is a Hilbert space, then
V(B(X), T)=W(T)

numerical range of T.

is the closure of the wusual

We denote the spectrum. the approximate
point spectrum, and the compression spectrum of
an operator T € B(X) by o (T). o (T). and ¢
«(T) respectively. We note that for each T &
B(X), 6,.,(T)C_ZVW. and in particular. the
boundary in the complex plane of the spectrum
of T, 8¢(T) is contained in W—(TS

By Bonsall and Duncan (1971). and Corollary
o (T)CV(B(X). T)=To W(T).

However we have the following stronger state-

2.5, we have

ment.

THEOREM 2.7, For each T in AX). we have
o (T)SW(T).

PROOF. For each T in B(X) we have a(T)=
e (T o T) by Berberian (1974). If A ¢ o
«T). then the range of T— Al is not dense so
since R(AI-T)* =N(2I-T*). the range of T—
Al has a nonzero orthogonal complement. Hence
A is an eigenvalue of T* so that 2 € W(T*),
and therefore A & W(T). On the other hand.
0 (TYCSW(T). Therefore o (TYCW(T).

COROLLARY 2.8 (Williams, 1967). For each T
in A(X) we have o (T)CV(T).

Now we present an extension of Theorem 2.7.
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THEOREM 2.9, Let S, T be operators in A(X)
and 0 £ W(T). Then o (T 'S)ICW(S)/W(T)= |2
/p A eW(S), #eW(T).

PROOF. Let z be a complex number not
belonging to the above set on the right. Then
there exists d>0 such that lzx—A | zd (A ¢
W(—S-), 72 VT(T)). Given (xf)e mp, we have
HET-S)x I x= | K<(zT-S)x,x>) | =d since f(
Tx,x)) e W(T) and f((Sx,x>) e W(S). Similarly,
H(zT—S)*x i x==d. By Berberian (1974}, we
conclude that zT-S is invertible. Since 0 £
WI(T) and a(T)g_VV(_T). T is invertible. There-
fore zI-T 'S is invertible ie. z £ a(T7'S)

COROLLARY 2.10 (Williams. 1967). Let S. T
be operators in A(X) and 0 £ V(T). Then
o (T™'S)C V(S)/V(T).

In order to apply the numerical range to unital

C*—algebra A, we consider the isometirc left
regular representation T,: A — B(A). where

T,b)=ab (ab € A).

THEOREM 2,11, Let A be a C*—algebra with
unity e. Then for all a € A, W(T,)=1(a) . {¢
Py,

PROOF, Since any C*-algebra A is a Hil-
bert A—module with <aby)=b*a (a.be A). and
W(T.)= 1 {(<T.b.b>) : (bf) € mp | = Hf(b*ab) : (b.f)
e mp}.foreach f € P.(ef)e mp, and {(a) €
W(T,). Thus f(a):f e PJCW(T,. On the
other hand, for each (bf)e ., we define fi(c)
=f(b*cb) for all ¢ € A. Then f, is a linear
functional on A, fy(e)=1, and 1 f, It =1, so that
f, € P. Hence f(<T,b.by)={(b*ab)=f,(a) € |i(a)
:feP|. Therefore W(T,)=1(a) :{ € P}.

From Stampfli and Williams (1968), we note
that {f(a) :fe P| is a convex closed and con-
tains the spectrum o(a) for each a in a unital C

*_algebra A.

Il. Topological properties

We turn now to topological properties of our
concept of numerical range. We recall that the
normX weak® topology in XxB' is the product
topology in XXB’ given by the norm topology
on X and the weak* topology on B* (Yang.
1984).

The following two resuits are essentially due
to Bonsall et al (1968). '

LEMMA 3.1, Let E be a subset of my such that
is relatively closed in mp with respect to the normx
weak™® topology. Then m(E) is a norm closed subset
of X.

PROOF. The proof is similar to that of Lem-
ma 3.2 (Yang, 1984).

THEOREM 3.2. mp is a connected subset of XX
B’ with the normX weak® topology, unless X has
dimension one over R.

PROOF. The proof is similar to that of
Theorem 3.3 (Yang. 1984).

COROLLARY 3.3. W(T) is connected.

PROOF. We have | {f(xTx.x>)—g(<Tyw) =1
Tx=Tylx+I Tyt x Ix—y il x+ | (f-g)<Ty.»)
((x.0), (x.g)e mp). Therefore the mapping (x.)
— f(<Tx.x>) is a continuous mapping of =mp
with the relative normXxXweak® topology onto
W(T). Therefore by Theorem 3.2, W(T) is con-
nected, unless X has dimension one over R. In
case X has dimension one over R. W(T)=|a|
since the unit sphere consists of just two vectors

+u and Tu= Au for some real A.

By Theorem 4.1 (Bonsall and Duncan, 1971)
and Corollary 2.5, @(T)S 1Tl Sew(T) (e=exp
1) for T in B(X). Let B(X) be the set of all

bounded linear operators. endowed with the uni-
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form operator topology induced by the norm on
X. Then @(.) is a norm on B(X). inducing the
same topology on B(X) as that induced by the
original norm. The numerical index of X is the
real number n(X) defined by

n(X)=mnflv(T): TeBX). n1Tu=1i.

By Corollary 2.5, n(X)=inf|w(T): T e B(X),
NT i =1{. It is obvious that l/e=n(X)<1. It
has long been known that for a complex Hilbert
space X of dimension greater than one, n(X)= 4
(Halmos, 1982).

Consider a pair of compact subsets of the
complex plane, M and N, and write M+(¢)= |z
+a zeM. @ <ef for €>0. Then we de-
fine dM.N)=inf {e : MN+(€) and NCM +(
€)|. Thus we can consider d(W(T)., W(S)) as a
metric, the "Hausdorff metric” on sets associated
with T and S. Using this notation. we have the
following theorem which is taken from Halmos
(1982)

THEOREM 3.4. W(~) is a continous function
from B(X). endowed with the uniform operator topol-
0gv to the set of compact subsets of C. endowed with
the Hausdorff metric topology. Also w is a real—
valued function on B(X).

PROOF. Let T, S. be any operators. If || ST
lh<e. and (xf)e 7p. then |f(<S=T)xx>)| I
S=Tl<e. and so f(<Sx.0)=H<Txx>)+{((S~
T)xx>) € W(T)+(e). It follows that W(S)&
W(T)+(¢). Thus T(S)gVTT)-&—( €) By symmet-
ry. WIDSW(S)+(e) Thus 11S=T i ¢e implies
d(WS). W(&T))ge, and W() is a continuous
function from B(X) to the set of compact subsets
of C. endowed with the Hausdorff metric
topology

Also @(S)Sw(T)+ @ and w(T)Sw(S)+ ¢
mply | @(S)—«(T)! Se. So @(,) i1s a con-

tinuous real-valued function of its argument.

Given x € S(X). let W(T.x)= {f{((Txx>) :fe

P. {(kxx>)=1!. (T e B(X)). Then it is obvious

that
W(T)={ [W(T.x) : x € S(Xh.

LEMMA 3.5. (Bonsall and Duncan. 1973). Let
X. Y be metric spaces with Y compact, let ¢ be a
mapping of X into 2¥ such that $(x) is closed for
each x € X. Then ¢ is upper semicontinuous of
and only if x, € X. vo € $(x) (n=1,2,---), x=

lim x,. y=lim v, implv y € ¢é(x).

THEOREM 3.6. The mapping x — W(T.x) is an
upper semicontinuous mapping of S(X) with the
norm topology into the novoid compact convex subsets
of C. -

PROOF. The sets W(T.x) are nonvoid compact
convex subsets of a compact disc in C. Let x,
€ S(X). A, ¢ W(Tx,). lim Ix,—x1It x=0, and
lim | A,—A4 | =0. Then there exists f, ¢ P
such that {((xpxp)=1 and A,={(Tx..xp).
By the weak® compactness of the unit ball in
*B’. there exists a weak™® cluster point { of {fy}
with 1, I=<1. Also

[T =1 &x, ) S [£,0Kx, — x,x.0)] +
| 1200, x = x|+ | (£, —1) (Kx, )|
S20xe—xlix + [ (F,—1) Kx, )|,
from which f(<x,x») =1, and f(e) = I.
Finally |A-f({Tx,x») | S | A=4, |+ f,
(CTxy = T, x D) |+ £, (KTx,x = x3) |+
(=) KTx, x>} | £ | A=A, |+ Tx, ~
Txllx + llxg=xilx I Txpix + | (£, =)
KTx, x>,

which gives A =f(<Txx)). By Lemma 3.5, x —

W(T.x) is an upper semicontiuous mapping.

Since the numerical range of a bounded oper-
ator T on a Hilbert space need not be a closed
set. the same is true of W(T). For we let B be a
C*—algebra and we denote by ¢ %B) the space

of sequences x=(x;xp, ). xj€B. 1=k < oo,
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which satisfy the condition that 3 x,*x, con-
verges. The space ¢” (B) becomes a right B—
module when we define xb=(x,b. x;b..--) for x=
(x1.%2.-+) € ¢%(B). be B and a pre—Hilbert B—
module when we se¢t (xy)=3y,*x for x=
() Xom-), y=(y1.y2.-) € ¢ 3(B). We introduce a

norm in ¢ %B) by the formula lIx %=1 $x*
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