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I. Introduction and Preliminaries

A ring R which has no nonzero nilpotent
ideals is called Nil-semisimple(iniroduced by
D.M.Burion). If, in addiiien, R is right
Artin, R is Semi-simple. Thus the radical
of a s2mi-cimple rinz is zero and in fact this is
sometimes taken as thes definition of samisim
plicity. A ring R is Local if all the noninver-
tible elements form a proper ideal. A local
ring thus has precisely cne maximal ideal,
which also is the unique maximal right ideal.
Note: The rinz R is lozal if and only if R/J(R)
is a skew-field [2].

More generally, R ic caid to be a Semi-local
ring if R/J(R) is a s2mi-simple ring. Note that
a semi-local ring has only finitely many max-
imal right ideals. A commutative ring is semi-
local if and only if the number of maximal
ideals is finite [2]. A ring R is Semi-primary
if the Jacobson radical J(R) is nilpotent and
R/J(R) is Artin. If R has ihe property that
R/1 is s2mi-primary for each ideal I+0 of R,
we call R a Resiricied semi-~primary ring (int-

roduced by Kenneth E. Hummel) or RSP ring
for brevity.

The concept of a commutative ring all of
whose factors are Artin (RM-rings) was intro-
duced by I.S.Coli in (5], end later noncomm-

utative RM-rings were considered in (1) by A.
J. Ornstein.

If R has the property that it isa semi-local
and idempotents can be litted modulo J(R), we
call R a Restricted szmi-local(or semi-perfect)
or RSL-ring for brevity.

. Theorems and Lemmas

An element e of a ring R is Idempotent if
e’=e.

LEMMA-1. If R is a right Artin ring and I
is @ non-nilpotent minimal right ideal in R,
then I has a nonzero idempotent.

PROOF. Let a be a non-nilpotent element of
I. Then aRc 1 and is non-nilpotent since aZ
aR:thus aR=1] by minimality. Similarly a’R=
I. Thus there is an a,e aR such that a=aa,.
Then aa,?’=aa,=a so a(a,—a,?)e {a}. N aR,
where (a}, is the s2t of right annihilators of a.
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Now we let a,=a-+a,—a,a o that aa,=a?+aa,—
aa,a=a?+a—a?=a. Also

az(a.—a.z)=aa,+a.2—alaa‘—aa,z—al3+a,aa.z

—a+az2-aa-a—a’+aa=a’—a’

Since aap=a, a, is not nilpotent. Hence a;R=aR
=1 and {a;), N aR < (a). n aR. Either aj2=
ajsor a2#a2 If a?=a? then (a?)=a’a,=
aza,=a*=a,? $0 a,® is idempotent and we are
finished. On thz other hand, if a,2#a,3 then
a,(a,—a,2)#( and a,—a,? & {a,}, N aR. Ther-
etore, {a;)r N aR c (a}, c aR.

We can now repeat the process with a, pla-
ying the role of a. We obiain elements 2;,a4 €
I such that either a;?=a;® or a;?+as® and (ad:
N aR c {a;). N aR. If a?=as a:? is our des-
ired idempotent. If a;2#ay%, then the ccniain-
ment is sirict. Hence if an idempotent is not
obtained after a finite numter of sieps, we
have an infinite descending chain of right id-
eals, contradicting the fact that R is right
Artin.

If there are noi nonzero nilpotent ideals in
an Ariin ring, we can obtain the following
result;

THEOREM-1. Any nonzero right ideal in a
semi-simple ring has a unique idempotent ge-
nerator.

PROOF. Let I be nonzero right ideal ot R.
Then I is non-nilpotent and I has a nonzero id-
empotent element. Using the minimal condii-
ion, we choosz a nonzero idempotent e e[
such that {e). n I is as small as possible. Su-
ppese {e). N 1 # (0). Then {e}. n I is non-
nilpotent and hence cotains a nonzero idempo-

tent e,. Let e,=e+e,—e,e. We note that e, #0.

Then e;e I and since ee, =0, we have
e2=e?tee,—~eeetee—el—ele—eel—eee,+

eeee=e+e,e.e

=e;

Moreover, (e N I cle}.N], since ee.=
e+ee,—eee=e, and so if e;x=0, we have ex=
ee;x=0. But ee,=0, so that e;e {e}r N I, and

e.e,=ee, +e,—ee2,=e,#0 and hence e, & {e2)e
N I. Thus (e.}. N I cle}e N I, whichis aco-
ntradiction. Hence we have (e}, N I=(0). Now
we let x ¢ I. Then e(x—ex)=ex—e’Xx=ex—ex
=0, so x—ex ¢ (e}, N I=(0) and therefore ex
=x. Thus I=eR and e?=e. Here, clearly =
{e)y and (IL,nI? cIl,=(0). Hence T, N I=0)
since R is semi—simpleand I; n I is a left id-
eal in R. For each x ¢ I, (x—xe)e=0so0o x—xe
e (el n I=L n I=(0). Thus x=xe for all x
¢ 1. Also, for any x ¢ I, x ¢ eR, thatis, x=
er for some r ¢ R, so that ex=e?r=er=x. He-
nce e is a two-sided identity in the ring I and
as such as is unique.

By the above Lemma and Theorem we obtain
the followings.

COROLLARY-1. Any semi-simple ring R is
a right Noetherian.

COROLLARY-2. A semi-simple ring R has
an identity.

COROLLARY-3. A commutative semi-simple
ring R is a principal ideal ring.

LEMMA-2. If Ais an ideal in a ring R, then
JRY=J(R) n A.

PROOF. Since every element of A n J(R)is
left quasi-regular, we have A c J(R) cJR).
Supposs that J(R)=(0). Let P=(x¢ RlAx=
(0)). P is clearly a right ideal of R. AJ(A) is
a left ideal of R and AJ(A) c J(A) and so
AJCA) is left quasi-regular. Thus AJ(A) <
J(R)=(0). Then J(A) =« P n A. Butifxe
P n A and x2=0, then x e J(A) since every
nil left ideal of Ris contained in J(R). Hence
JCA) =P n A. Therefore, J(A) is a right ideal
of R. But every element of J(A) is right
quasi-regular as an element of A and hence as
an element of R; therefore J(A) isa right
quasi-regular right ideal of R. Thus J(A) <
J(RY=(0.

Now we consider the general case. (A+J(R))
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/JR) is an ideal in the semi-simple ring R/
J(R). Therefore, JCCA+J(R))/J(R)=(0) and
so J(A/ (A n J(R) )=(0). Hence J(A)c A n
JR).

THEOREM-2. If A is an ideal in a semi-
simple ring R, then A is also semi-simple.

Let e, €, -, €a be nonzero idempotents in a
ring R. They are mutually orthogonal if eie;=
0 whenever i#j. In this case e=e,+e;+---+e,
is also an idempotent. An idempotent is Pri-
mitive if it cannot be written as the sum of
two orthogonal idempotents. It is well known
that:

Remark-1. Let R be a semi-simple. Then an
idempotent 0 # e ¢ R is primitive if and only if
eR is a minimal right ideal of R.

Remark-2. In a semi-simple ring R, an ide-
mpotent e # 0 is primitive if and only if eRe
forms a division ring.

A ring R is called Regular if for everyaeR
there is some xeR such that axa=a. Now, we
have the following theorem.

THEOREM-3. Let R be a regular ring. Then
an idempotent 0 # e in R is primitive if and
only if eRe is a division ring.

PROOF. Suppose e is primitive in R and a
is nonzero element in eRe. Then Re is minimal
and a ¢ Re and so Ra = Re. Hence Ra=Re or
Ra=(0). But a=ea ¢ Ra, so that Ra # (0).
Therefore Ra=Re. Thus e ¢ Ra, ie, there is
an x ¢ R such that e=xa. Then exe is a left
inverse in eRe for a, since exea=ex(ea)=exa
=ee=e. Hence eRe is a division ring.

Coversely, if eRe is a division ring and I is
a left ideal of R with I c Re. Thenelisa
left ideal in eRe. Hence either eI=(0) or el=
eRe. If el=(0), then I2c Rel=(0) and I=(0)
since R is regular, R has no nonzero nilpotent
ideal (6). Now suppose that el=eRe. Then
there is an x € I such that ex € eRe and ex

# 0. Also, exe=ex since e is the identity for
eRe. Moreover, ex has an invVerse in eRe, say
eye. Then (eye) (exe)=e and e ¢ Rexe=Rex
< 1. Then Re c I and I=Re, so that Re is a
minimal left ideal of R. Hence e is a primitive
(Remark-1].
By the preceding theorem and Remark-2,

we obtain the following.

THEOREM-4. In a semi-simple ring R, an
idempotent e #+ 0 is primitive if and only if
an idempotent e # 0 is primitive in a regular
ring R.

LEMMA-3. In a ring R having exactly one

maximal ideal M, the only idempotent are 0
and 1.

PROOF. Suppose that there exists an idem-
potent a ¢ R witha = 0,1. Then a?=a implies
a(1-a)=0 so thataand1l-a are both zero
divisors. Hence, neither the element a nor 1-a
is invertible in R since no divisor of zero can
possess a multiplicative inverse in R. But this
means that the principal ideals (a) and (1-a)
are both proper ideals of R. As such, they
must be contained in M, the sole maximal of
R. Hence aand 1-—a lie in M, whence 1=a+
(1-a) e M. This leads at once to the cotradict-
ion that M=R. .

Let R be a local ring, then R has precisely
unique one maximal ideal (preliminary). ‘

THEOREM-5. If R is a local ring, then the
only idempotent in R are 0 and 1.

Let us first show that the chain codition are

not destroyed by homemorphism.
LEMMA-4. If R is an Artin ring, then any
homomorphic image of R is also Artin.

PROOF. Let @ be a homomorphism of the
Artin ring R onto the ring R* and consider
any decending chain I,* o I* D -2 I.* o-..
of ideals of R*. Put Iy=®"(L,*), for k=1,2, ---,
Then I, o I; o--2 I, © .- forms an decend-
ing chain of ideals of R and there is some n
such that In=I. for all m =n. Since f is an
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onto mapping, we have ® (I,)=L* Hence, I.*
=I.* whenever m > n, so that the original
chain also stabilizes at some point.

Letting & be the natural mapping, we have
as a theorem;

THEOREM-6. If 1 is an ideal of the Artin
ring R, then the quotient ring R/I is Artin.

COROLLARY-4. If 1 is an ideal of the Noe-
therian ring R, then the quotient ring R/I is
also Noetherian.

LEMMA-5. For any ring R, radical of the
quotient ring R/J(R) is zero.

PROOF. Let J=J(R). Suppose that the coset
a+J € J(R/D. Hence, (1+DH-(r+]) a+Jy)=1
—ra+] is invertible in R/J for each choice of
r € R. Accordingly, there exisis a coset b+J
such that (1-ra+J)(b+))=1+J. This is plai-
nly equivalent to requiring 1—(b—rab) ¢ J. And
we conclude that the element b—rab=1-1(1
—b+rab) has an inverse cin R. But then a-
ra)(bc)=(b—rab)c=1, so that 1-ra possesses
a multiplicative inverse in R. As this argum-
ent holds for every r ¢ R, it follows that a €
J(R)=J. Hence a+]J=].

LEMMA-6. 1f R is an Artin ring, then J(R)
forms a nilpotent ideal.

POOF. Let J=J(R). Then J o Je D, and
so there is a positive inieger n such that Ja=

JH=..=Jr="+i=... Assume Jo#(0). Then In
is contained in the family

F={L|L isaleft ideal in R,L c Jn, JsL#(0)}.
Hence F # ¢. Let Lm be minimal in F. There
exists 1 ¢ Lm such that J=1 # (0). Since Jo=
P, Jo1 is a member of F. Furthermore Jr1 c
Lm and therefore Jo1=Lm. Hence there exists
X € J» c J such that x1=1. Since x is quasir-
egular, there exists y ¢ R such that O=x+y
—yx. This implies that O=llx-y(1-1x)=1-
(x+y-yx)1=1 a contradiction since Jo1+(0),
Therefore Jo=(0).

COROLLARY-5. If R is a right Artin ring,
then J(R) is the unique largest nilpotent ideal

in R,
FROOF. Any nilpotent ideal is contained in

the prime radical and this is contained in ra-
dical of R.

Here, by Theorem-6, Lemma-5 and Lemma-6

THEOREM-7. If R is a right Artin ring,
then R is a semi-local ring.

THEOREM-8. If R is a right Artin ring,
then R is a semi-primary.

A module M is Completely reducible if every
submodule of M is a direct summand of M.

LEMMA-7. If an R-module M is the sum of
irreducible submodules, then M is completely
reducible.

PROOF. Let N be a submodule of M and N*
a submodule of M maximal with respect to the
property thai N n N*=(0). We must show
that M=N+N#*, Suppose not. Then there exists
m in M such that m €& N+N*. We have m=
m;+--+ms, m; € M;, an irreducible submo-
dule, i=1, ---, s. Some m; & N*+N and there
exists an irreducible submodule M; such that
M; & N+N* Because M; is irreducible, M; n
(N+N*)=(0). Bui then N* c N*+M; and (N*
+M;) n N=(0), contradicting the maximality
of N*. Thus N+N*=M,

THEOREM-9. A right Artin ring R with
identity is semi-simle if and only if every ri-
ght R-module has no proper large submcdule.

PROOF. 1If R is semisimple, we have R=e,
RP---@e.R, where the e;R are minimal right
ideals of R. If M is an R mcdule, we can write

M=3 % meR. Each meR is clearly a sub-
modtelle, but the sum is not n=cessarily dirzet.
Each eR is an irreducible R-module, so that
each me;R is either irreducible or else meiR=
(0). Thus by the Lemma-7., M being the
sum if irreducible submodules, is completely

reducible. Then a large submodule of M has
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nonzero iniersection with every nonzero sub-
module of M, hence contains every irreducible
submodulz of M, hence contains SocM=M. so
that M has no proper large submodule. Conv-
ersely, if every R-module M has no proper
large submodule, and let B be any submodule
of M. Then we hava C ¢ M such that B n
C=(0) and B+C is large. Thus, by condition,
B+C=M, Hence, M is completely reducible.
Then R ic completely reducible. Let J(R) ke
its radical. Then R=J(R) @& N, N some right
ideal of R. Then 1=x+x* x € J(R), x* ¢ N.
Then x—x2= x*x € J(R)n N. Hence x—x2=0
and x=x?=--=0 since x € J(R) and hence is
nilpotznt. Thus x*=1and N=R. Therzfore
J(RY=0, iz. R is s2mi-cimple.

According to the fact that if every right R-
module M is completely reducible, then R is
also completely reducible. We have the follo-
wing equivalent statement.

THEOREM-10. 1) R is semi-simple

2) R is completely reducible

3) R is right Artinand regular

4) R is right Noctherian and
regular

Let N bz a two-sided ideal of an arbitrary
ring R. We say that idempetents can be lifted
module N if for every idempotent f ¢ R/N th-
ere exicts an idempot2nt e ¢ R such that é=f.
This m2ans that the idempotents of R/I can
be lifted if for each element u ¢ R such that

u?—u e I itherz exists some element e?=e ¢ R
with e—u e I.

LEMMA-8. If N iz a nil ideal of an arbitr~
ary ring R, then idzmpotents can be liftad
module N.

PROOF. Supposz { is an idempotent of R/N.
Choosz u ¢ R such that i=f. Then u?—ue N,
-and hence (u2—u) =0 for some r. Hence, we
obtain 0=ur(l—u)r=ur—ur*' gCu) ---(1), where
g=g(u) is a polynomial in u. Now put e=urgr.
By the usz of (1) wz get e?=u¥rgtr=ur"! urt'g,

gzr-l=ur-lur22r-l=u2r'lg2r'l_—_...=urgr=e. We al-
so have e=f, because (1) gives f=f8={gr,

THEOREM-11. If R ic an Artin ring, then
idempotents can be lifted module J(R).

PROOF. Since R is an Artin ring, JR) is
nilpotent. So that J(R) is a nil ideal in R.He-
nce, by Lemma-8, idempotents can be lifted
modulo J(R).

THEOREM-12. Every right Artin ring is
Restricted semi-local ring.

PROOF. Let R be a right Artin, then so is
R/J(R). And, by Lemma-5, R/J(R) is semi-

simple. Moreover idempotenis can be lifted
modulo J(R), by Theorem-11, since the radical
is nil. Hence R is RSL-ring.

COROLLARY-6. Any semi-cimple ring is a
RSL-ring.

COROLLARY-7. Any csemi-primary ring isa
RSL-ring.

A projeciive cover of M ic a minimal epim-
orphism of a projective mcdule cnio M. We ca-
1t a ring R right RSL if every cyclic right R-
module has a projective cover. This definition
of RSL is equivaleni two the definition in the
introduction.

LEMMA-9. Let I be a two-cided ideal in R.
Then if P—A—(0) is a R-projective cover
of a R/I-mcdule A, the induced map P/IP—
A—(0) is a R/I-projective cover of A.

PROOF. Let K=ker(P—A). Since IA=(0),
IP c K and the secend map is well defined.
Moreover, P/IP is R/I-projective. If S/IP+
K/IP=P/IP then S+K=P, co S=P and there-
fore S/IP=P/IP; ie. P/IP—A is minimal.

From this Lemma, we have the following
theorem.

THEOREM-13. If Risa RSL-ring and I is
an ideal in R, then R/I is also RSL-ring.

LEMMA-10. Suppose (0)—K—P—A—>
0) is exact with P projective and P(A)—A
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—(0) is a projective cover. Then we can
write P=P(A) @ P* withP* c Kand K n
P(A) superfluous in P(A).

PROOF. Since P is projective, there exists

a map P—P(A) making P—A— () com-
mutative. PCA)
Since im(P — P(A))+(P(A) —A)=P(A),
im(P—P(A))=P(A), so P—P(A) is an epi-
morphism and therafore splits. Thus, identif-
ying P(A) with a direct summand of P, we
may write P=P(A)® P*, where P*=ker(P—
P(A)) c ker (P—A)=K. Morzover, P—A
induces. the given minimal epimorphism P(A)
~—A on P(A), and the inducad kernzl is Kn
P(A).

From this the last statament follows.

LEMMA-11. If 1 is a right id=al of R, then
R—R/I—(0) is minimal if and only if I c
JCR). Moreover, if R is right RSL-ring, either
I c J(R) or I contains a nonzero direct sum-
mand of R.

PROOF. 1 is superfluous in R if and only if
I is comaximal with no proper right ideal, ie.
if and only if Iis contained in every maximal
right ideal. Suppose now that R is right RSL-
ring, so that R/I has projective cover. ‘L'hen,
by Lemma-10, we can write R=P(R/I) @ P*
with P* < Tand I n P(R/D) superfluous in
PR/D. If P* + (0), we are finished. Other-
wise P(R/D=R, so I < J(R) by the first part
of this Lemma.

THEOREM-14. 1If R is nil-semisimple and ri-
ght RSL-ring, then R is an Artin. '

PROOF. We shall prove this by showing that :
R equalsits right sccle S. If not, S c M for
some maXimal right ideal M. Applying Lemma-
10 to the exact sequence (()—M—R—R/
M—(0) we have R=P@Q with Q c M and
M n P superfluous in P. The latter condition
guarantees that M n P can contain no direct
summand of P, so also of R. Hence, by the
nil-semisimplicity and by Lemma-11, M n P=
(0). But then P = R/M so P ¢ S:Coniradic-
tion.

THEOREM-15. If Ris a nil-semisimple, and
RSL-ring, then R is RSP-ring.

PROOF. By Theorem-14, R is an Artin.
Hencz R/I is an Ariin for every ideal I #0 of
R. Then R/I is a semi-primary ring(by The-
orem-8). Thus R is a RSP-ring.

Now, we call a ring R is a Resiricted semi-
simpleCorRSS-ring for brevity) if R/I isa
s2ami-simple for ideal I #0 of R. Then we ha-
ve the following Theorems.

THEOREM-16. If R is a RSS-ring, then R
is RSL-ring.

THEOREM-17. If R is a RSS-ring, then R
is a RSP-ring.

PBOOF. Since R is a RSS-ring, R/I is an
Artin. Then J(R/D is nilpotent and R/I/J(R/I)
is an Artin. Hence R is a RSP-ring.

THEOREM-18. If R is a nil-semisimple and
RSL(or RSP)-ring, then R is a RSS-ring.

PROOF.By Theorem-14,R isan Artin. Thus

R/I also Artin for ideal I+#0 of R. Hence R/I
is a semi-simple.
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