A Note on Recursion

Kim Byung-chul

Recursion0f 243k /¥

&

1. Introduction

Recursion refers to several related concepts in
computer science and mathematics.

Such as stepwise decomposition and structured
programming. the idea of recursion can enable us
to see to the heart of many problems and to
design algorithms that are straightforward, easy to
understand. and correct

The first language to use recursive subroutines
on a regular basis were the IPL languages of
Newell. Shaw. and Simon, Lists were used for the
stack and the saving and restoring was done
explicitly by the programmer. The first language
to provide an automatic mechanism for recursion
was LISP. Algol 60 and its successors, Pascal.
Ada. also allow recursion, as do such other popu-
lar languages as APL. PL/I. C. and SNOBOL.

In this paper. correct perception, deep under-

standing. and paractical usages of recursion are

BT A (M

+
oo

attempted through the global perspective and full
review. However, theoretical study, implementation
method, and detatl applications are neither planed

nor stated.

2. Uses of recursion

1} recursive defintition

A form of definition will be termed recursive if
free occurrences of the defined identifier on its
right-hand side are to denote the value it defines
(1) (Tennent, 1981).

One reason BNF is a powerful notation is that
it permits recursive defintion of svntactical forms,
allowing us to describe syntactical forms whose
structures are inherently recursive.

For example. the followings are left and right
recursive rules respectively.

<unsigned integer> = (digit

| <unsigned integer> (digit)
Cexp—list) =<exp) | Cexpy, <(exp-list

— 231 —



2 Cheju National University Journal Vol. 22 (1986)

These are not circular definitions because the
single (digit> or <exp) provide a base or starting
point for the recursion. That is, one of the
alternatives in each definition is not recursive.

This is called a well-formed tecursive definition.

2) recursive data structure

Some data structures such as list, tree, graph
etc. are recursive structures. These types are re-
cursively defined, usually by using pointers. For
example. a binary tree is defined as follows in C
language :

typedef struct node

hint no:

char *name;
struct node *left;
struct node *right;
| TREE;

And the natural kind of algorithm that manipu-
lates above recursive data structures turns out to
recursive algorithm.

In LISP, where list structures are the primary
data structures available. recurston is the primary
control mechanism.

3) recursive program (procedure. function or -
subroutine)

A procedure that contains a procedure call to
itself. or a procedure call to a second procedure
which eventually causes the first procedure to be
called is a recursive procedure.

When a procedure includes a call to itself we
refer to this as direct recursion. When a procedure
calls another procedure which then causes the
original procedure to be invoked, we call this
indirect recursion. (Horowitz and Sahni, 1978).

For example, the following is a recursive proce-
dure for the problem about the Tower of Hanoi in

Pascal :

procedure hanoi (n: integer, sndl, indl, dndl:
char);
begin
if n¢>0
then begin
jmove n-1 disks from starting needle to
intermediate needle}
hanoi(n—1, sndl, dndl, indl):

fmove disk n from start to destination}

writeln (move disk, n: 1. ‘from’, sndl, ‘to’, dndl);

imove n—1 disks from intermediate needle
to destination needle}
hanoi(n—1, indl, sndl, dadl)
end;

end: t{hanoi}

Recursion, in to the form of recursive subprog-
ram calls, is one of the most important sequence-

control structure in programming.

3. Structure and description of recur-
sion

1) structure

Often in mathematics, an inductive definition is
composed of three parts: basic clause. inductive
clause, and external clause.

Sometimes the external clause is not stated in
mathematics. however, it is always excluded in
programming text.

" Recursion is the name given to the technique of
defining a set or a process in terms of itself. So
the structure of recursion must contain two steps:
stopping (or condition) step and inductive step.
For example. an Algol factorial procedure:

tnteger procedure fact(n):

value n: integer n;

— 232 —



A Note on Recursion .

fact:=1if n=0 then 1 else nxfact(n—1):

The right side of above assignment is called a
conditional expression (as opposed to the usual con-
ditional statement). (Maclenman, 1983).

In this expression, the first part "if n=0 then 1”7
1s a stopping step, and the last part “else nX
fact(tn—1)" is an inductive step.

Therefore we have to avoid creating an infinite
regression by making sure that we eventually break

out of the recursive cycle by containing the stop-

ping step.

2) description
There are three ways to describe recursive ob-
jects.
(1) equation: For example. the Fibonacci sequ-
ence is given by the equations.
fo=1. fi=1, f =i+l
(2) relation: For example. a differential equation
is to be solved numerically. such as
f(xo+nh)=F{{(xo+(n-1)h).
f(xo+(n—=2) h),-eee-: f(xq+(n=k)h))

(3) verbal statement: For example. a list is

defined to be any finite sequence of zero or more *

atoms or lists.
4. Types of recursive functions

There are essentially two types of recursion.
which are included in general recursive functions.
An important role is played by primitive recursive

functions.

1) primitive recursive function
The first type concerns recursively defined func-
tions (or primitive recursive functions):an example of
this kind is the factorial function, which is de-
fined as
FACT(N)=Jl. if N=0
lN *FACT(N-1). otherwise

2) nonprimitive recursive function
The second type of recursin is the recursive use
of a procedure (or nonprimitive recursive function). A
typical example of this kind of recursion is Acker-
mann's function, which is defined as
AM, N)y= {N+1. if M=0
A(M-~1, 1), if N=0
AM-1, A(M. N-1)). otherwise

5. Kinds of recursion

1) linear recursion

In the computation of n' the length of the
chain (;f deferred operations, and hence the amount
of information needed to keep track of it, grows
linearly with n.Such a process is called a linear re-
cursive recursive process. (Abelson and Sussman.

1985).

2) tree recursion

Another common pattern of recursive computa-
tion is called tree recursion (or doubly recursion).
As an example. consider computing the sequence
of Fibonacci numbers.

In general. the time required by a tree-recursive
process will be propotional to the number of nodes
in the tree, while the space required will be
propotional to the maximum. depth of the tree.
Other examples of tree recursion are copying the

number of tips of a list, and so on.

3) tail recursion

A procedure is said to be tail recursion if the
value returned is either something computed
directly or the value returned by a recursive call.
For example. FACT(N) is a tail recursion. (Win-
ston and Horn, 1984).

6. Implementation and execution of re-

cursive procedure

— 233 —



4 Cheju National University Journal Vol 22 (1986)

1) implementation

At the time of each recursive call,a new activa-
tion record is created, which is subsequent des-
troyed upon return. When an activation record is
created, a block of storage must be allocated for
it. This storage must remain allocated throughout
the life time of the activation. When the activation
ends, through execution of a RETURN :nstruc-
tion, the storage is freed for reuse. The allocation
and freeing of activation records is.implemented by
using a central stack. This stack forms a dynamic
chain composed of paurs (CIP, CEP) correspond-
ing to (CALL, RETURN). Many computers have
special instructions for handling stacks (eg.,
PUSH and POP). Other machines have instructions
that use a hardware stack directly for efficiency of

recursive programming.

2) execution

The general algorithm model for any recursive
procedure contains following steps:

(1} Save the parameters. local variables. and
return address.

(2) If the base criterion has reached. then per-
form the final computation and go to step 3;
otherwise, perform the partial computation and go
to step 1 (initiate a recursive call). (Tramblay and
Sorenson, 1984).

(3) Restore the most recently saved parameters.
local variables, and return address. Go to this
return address. Associated with each call to (or
entry into) a recursive procedure is a level number.
Another characteristic of recursive procedure is
the depth of recursion. which i1s the number of
times the procedure is called recursively in the
process of evaluating a given argument or argu-
ments. Usually, this quantity is not obvious, ex-

cept in the case of extremely simple recursive

functions, such as FACT(N), for which the depth
N.

7. Styles of recursive functions

There are two styles for writing recursive func-

tions.

1) down-going recursion

The down-going style keeps breadking the prob-
lem down recursively into a simpler version, until
a terminal case is reached. Only then can it start
to build up the answer, as intermediate results are
passed back to the calling functions. For example,
a down-ging version of FACT(N) is defined as

follows in lambda notation:
fact=An. if m=0 then 1 else n *fact(n—1)

2) up-going recursion

In up-going recursion the intermediate results
are computed at each stage of the recursion, thus
building the answer up and passing it in a work-
ing space parameter. until the terminal case is
reached. At this stage the answer is already com-
plete and it has merely to be passed back to the
top level calling function. We can write an up-
going version of FACT(N) as:

fact= An. factn(n.l)

factn= An. w. if n=0 then w else factn(n—1. n *
w)
8. Hints for writing recursive defini-
tions

The stage for writing functions in the previous

(6) styles are as follows. (Gray, 1984).

1) down-going recursion

(2) Write the definition for the terminal case

— 234 —



A Note on Recursion §

eg.. the number O or the empty list or a list of
one element.
(2) For the non-terminal case assume vou have
a defintion that works for a case nearer the trivial
case (n—1 or the remainder of a list). Use this to
construct an expression for the next case up.
(3) Combine 1 and 2 with a conditional ex-

pression. Test it with examples.

2) up-going recursion

(1) Invent a function with extra workspace
parameter(s), especially one to build up the result.

(2) For the terminal case set value of function
=workspace parameter.

(3) For the nonterminal case recall the func-
tion with the new parameters expressed in terms
of the old.

(4) Call the function with starting values for
workspace parameters.

{5) Test it with examples and adjust starting

values if necessary.

3) tree reucrsion (down-going)
(1) Use atom(t). and may be also aull(t) to test
for the terminal case.
(2) For the general case assume that your
function works on hoth car(t) and cdr(t). and write

an expression that combines them.

9. Comparison with iteration

1) Recursion. why not used?

Recursion is a powerful programming techeni-
que which unfortunately 1s not employed to the
extent i1t should. There are at least two reasons
for this. One is the fact that old languages being
now used widely such as FORTRAN, COBOL,

BASIC etc. do not permit recrusion. Thousands of
people who have learned the art of programming
using them have thus been unable to experience its
benifits. Two is the fact that there is often a
heavy penalty in terms of execution time where

one uses recursion on some compilers.

2) Recursion and iteration are theorectically
equivalent

In theory, any recursive program can be con-
verted into and iterative program by maintaining
such a stack. (There is an algorithm that trans-
forms mechanically any promotive recursive func-
tion into an equivalent iterative process. but not
vice versa. And the tail recursion can be easily
transformed into iteration.) This is effectively
what an Algol or Pascal compiler does: it con-
verts recursion into iteration. Although this reduc-
tion is a theoretical possibility, it is not practical
to do by hand in most cases. since the resulting
program is so much more compilcated. From the
programer’s viewpoint, recursion is more powerful
than iteration. Since recursion can in principle be
reduced to iteration. we might wonder if iteration
is more powerful than recursion. This 1s also

false.

3) advantages of recursion
The recursive -approach to problem solving

often brings us simple and elegant expression and

method.

Recursion is widely used in many area such as:
grammar defintion (language). recursive decent
parsing(compiler). tree traversal(graph). list proces-
sing. recursive computation. and recursive simula-
tion etc.

Recursion is very powerful technique for deal-
ing with hierearchical structures. And recursion 1s

becoming increasingly important in symbolic man-

— 235 —



6 Cheiu_National University Journal Vol 22 (1986)

ipulation and nonnumeric applications.

4) disadvantages of recursion

Recursive programs tend to be harder to under-
stand. as well as hard to follow in printouts, than
nonrecursive ones. When something goes wrong,
debugging may be very difficult. As we get buried
deeper and deeper in the recursion. the tracing of
the flow by means of printouts can become quite
difficult. And another disadvantage of recursion
inefficiency.

On each entry to a recursive program it is
necessary to save information, such as partially
computed results. This bookkeeping is done auto-
matically in recursion, but on the other hand it is

time-consuming.
10. Directions of research on recursion

The systematic study of recursion began in the
1920s when mathematical logic began to treat
questions of definability, computability. and de-
cidability. An important result for computer scien-
ce is that the general recursive functions concide
with functions defined by a Turing machine,
which is a simple form of computer.

Both program and general recursion schemata,in

general. give partial functions because the computa-
tion may terminate for some values of the argu-
ments and for others.

The connection between current research in re-

cursive function theory and computing practice. or
even current research in computer science, is
rather tenuous.

McCarthy et al. has some discussion of impli-
mentation of recursion in LISP, and Randell and
Russell discuss the implementation of recursion in
Algol. Wirth discusses when to use recursion and
when to use iteration. Peter has a thorough treat-
ment of subclasses of general recursive functions.
The standard reference on recursive function
theory was written by Kleene(1952), who gave a
more elementary treatment in a later book(1967).

Two aspects of recursion are current research
topics in computer science. First, the notion of
recursive program 1is being extended in various
ways.and methods of implementing these extensions
by compilers and interpreters are being studied.
Second. the formal properties of recursive prog-
rams are being studied as part of the mathematical
theory of computation, which has as its major
object the ability to prove assertions about prog-
rams and check these assertions on a computer.
(McCarthy, 1983)

Literature cited

Tennent, R. D: Principles of Programming
Language: Prentice~Hall International, INC..
1981, p.131:

Horowitz Ellis, Sartaj Sahni: Fundamentals - of
Computer Algorithms ;: Computer Science Press.
Inc., 1978, p.13.

Maclenman Bruce J: Principles of Programming
Languages. CBS College Publishing, 1983,
p.138.

Abelson Harold. Gerald Jay Sussman: Structure
and Interpretation of Computer Programms : The
MIT Press McGraw-Hill Book Company.
1985. pp.32-39.

Winston Patrick Henry. Berthold Klaus Paul
Homn: LISP. 2nd. ed.. Addison—Wesley Pub-
lishing Company. 1984. pp.67-68.

Tremblay Jean—Paul, Paul G. Sorenson: An Intro-

duction to Data Structure with Application. 2nd.

— 236 —



A Note on Recursion 7

ed.; McGraw-Hill, Inc.. 1984, pp.177-180.
Gray Peter: Logic. Algebra and Databases: Ellis
Horwood Limited, 1984, pp.67-69.
McCarthy John: Encyclopedia of Computer Scien-

ce and Engineering, 2nd. ed.. Van Nostrand

Reinhold Company Inc.. 1983, pp.1273-1275.

Goodman S. E. S. T. Hedetniemi: Introduction to
Design and Analysis of Algorithms: McGraw—
Hill. Inc., 1977, p.134.

— 237 —



	1. Introdction
	2. Uses of recursion
	3. Structure and description of recursion
	4. Types of recursive functions
	5. Kinds of recursion
	6. Implementation and execution of recrsion procedure
	7. Styles of recursion functions
	8. Hints for writing recursion defintions
	9. Comparision with iteration
	10. Directions of research on recursion
	Literature Cited



