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Introduction

In [1] J.M. Howie has explained the basic pro-
perties of semigroup and studied the congruence on
a semigroup and proved the isomorphism of the quo-
tient set of a semigroup by the congruence relation.

In [2] T.K. Dutta has defined the relative ideal
and studied the properties of relative ideal.

Now we will review the properties of a semigroup
and relative ideal. And we will apply the isomor-
phism of the quotient set of a semigroup by the con-
gruence relation to the isomorphism of the quotient
set of relative ideal by the Rees congruence relation.

I. Definitions and Preliminarlies

Definition (1-1). We will say that (S,-) is a semigroup
if (xy)z =x(yz) for any x,y,z,=S .

Definition (1-2). If a semigroup (S,-) has the additional
property that xy = yx for any x,y <S8, it is called
a commutative semigroup.

Definition (1-3). If a semigroup (S,-) has an element
1 such that x1 = Ix for any xS, 1 is called an
identity (clement) of S and S is called a semigroup
with identity, or monoid.

Definition (1.4). If A and B are subsets of a

semigroup, we write AB = {ab:ac A, bEB} and
{a}]B =aB = {ab:bEB} for a€cs.

Definition (1-5). If (S,-) is a semigroup, then a
nonempty subset T of S is called a subsemigroup
of S if xy&T for any x,y eT.

Definition (1-6). A nomempty subset A of a semigroup
S is called a left ideal if SACA, a right ideal if
ASCA, and an idela if it is both a left and right
ideal.

Definition (1.7). If x is a nonempty set, then a subset
P ofXxXiscalledarelationonX.XxXiscall-
ed a universal relation and 1x = {(x,x):x €X}
is called the equality relation.

Definition (1-8). Let B(S) be the set of all relations
on X and let p,s €B(X). Then we define a
binary operation on 8(X) as follows; if p ,
7 €EB(X), then poo = {(x,y)EXxX
JzeX3x,y)epand (z,y)e o }.

Definition (1.9). p~! = {(x,y)eXx X : (y,x)e plis
called the inverse of p

Definition (1-10). A relatin P is called an equivalence
relation if (i) (x,x) € p for every X X : reflexive
(i) p = p~!: symmetric (iii)pop C p: transitive.

Definition (1-11). X/p = {x p : xE€X} is called the
quotient set with an equivalence p.p#* is called
the natural mapping from X onto X/ p defined by
xat= xp for any xeX.
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Definition (1-12). Let (S,-) be a semigroup. A rela-

tion R on S is called left compatible if (s,t})eR
= (as, at)eR and right compatible if (s,t) € R

= (sa, ta)ER for any s,t,a€S. R is called com-
patibel if (s,s" )R and (t,t )€ R = (st,st)eRfor
any s,1,s't'€S. A compatible equivalence relation
is called a congruence.

Proposition (1-13). Let S be a semigroup and let p be
a congruence on as emigroup S. ThenS/p = {xp
: X€S} is a semigroup.

Definition (1-14). If 9 is a mapping from a semigroup
(S,) into a semigroup (T,-) we say that J is a
homomorphism if (xy)? = (x9) (y?) for any
x,yES. We refer to S as the domain of?, to T
as the codomain of?, and to the subset S¥ = {s?
: €S} of T as the range of?. If ¥ is one-one we
shall call it a monomorphism, and if it is both
one-one and onto we shall call it an isomorphism.
Kerd = 9 -0 = {(a,b)€SxS:ad = bo}.

Proposition (1-15). If p is a congruence on a
semigroup S, then S/p is a semigroup w.r.t the
operation (ap ) (bP) = (ab)p and the mapping ¢:S
defined by xp* = xp for any x€ S is a homomor-
phism. If $:S = T is a homomorphism, where S
and T are semigroups, then tiic relation Ker ¢ =
¢4 = {(a,b)ESxS:a$ = bé¢} is a congruence
on S and there is a monomorphimsm a:S/keré
— T such that ran (a) = ran ($) and the diagram
commutes.

Proposition (1-16). Let p be a congruence on a
semigroup S. If $ : S = T is a homomorphism
such that P € Ker ¢ then there is a unique
homomorphism B : S/p = T such thatran (B) =
ran (¢) and the diagram commutes.

. Proposition (1-17). Let # , ¢ be congruences on a

semirgroup S such that P C 0. Then 7/p = {(xP,

yp) €S/pxS/hp : (x,y)€o} is a congruence on

S/p, and ($/p)/(%/p) = S/5.

11. Relative Ideal for Semigroup_
Definition (2-1). Let S be a semigroup and T be a

subsemigroup of S. A nonempty subset AofS
is called a left T-ideal if TAC A. The right T-ideal

is defined anlogously. A nomempty subset A of
S is called a T-ideal if it is both left and right
T-idea.

Example (2-2). Let M,be the set of all 2x 2 nonsingulr
metrices over the field of rational numbers. Then
M, is a group w.r.t matrix multiplication. Let T =
{(i g): a, b are integers} and A= { ¢ h
e,f,g,h are even integers}. Then A is a left %—idea]
as well as a right T-ideal of M,

Remark (2-3). Let S be a semigroup. Then every ideal
in S is a S-idal.

Propositon (2-4). Let S be a semigroup and A be a
left (right) T ,-ideal and a left (right) T,-ideal with
T,NT, #* ¢. Then A is also a left (right)
T,NT,-ideal.

Proof: Let x,y€T,NT,. Then x,y€ T, and x,ye T>.
Thus xy€T, and xyeT, and T,NT; is a
subsemigroup of S. Since (T,NT)ACT,ACA,
s0 A is a left T,NTsideal. In right case we can
easily prove.

Corollary (2-5). Let S be a semigroup and let A be
a T,-ideal and T.-ideal with T,NT,;#¢ Then A
is a T,NT,-ideal.

Proposition (2-6). Let S be a semigroup and let A be
a left T,-ideal and right T,-ideal with T, T,#¢
Then A is a T,NT,-ideal.

Proof: Since T,NT, is a subsemigroup and
A(T,NT,)CAT,CA and (T, NT,)ACT,ACA.
By the definition A is a T, NT,-ideal.

Proposition (2-7). Let S be a semigroup and let A and
B be a left (right) T -ideal. Then ANBand AUB
are also left (right) T -ideals. ’

Proof: Since TACA and TBCB, so
T(ANB)STACA and T(AN B)C TBC B. Thus
T(ANB)SANB. If x€ET(AUB), 3 teT,
acAUB,->- x=ta. Here if agA, then
x=taETA and if aEB, then x=tac TB. Thus
T(AUB)S (TA)U(TB) and TACA .and TBCB.
Hence T(AU B)S(TA)U (TB). In right case we
can complete the proof (by same method).

Corollary (2-8). Let S be a semigroup and let A and
B be a T-ideals. Then ANB and AUB are
also T-ideals

Remark (2:9). Let S and T be semigroup. Then the
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direct product SXT = {(s,t) : s€S,t=T}isa

plTU' is a congruence on TUI.

semigroup for (s,t) (s’,t) = (ss’,tt"). Now we can " Remark (2-13). Let S be a semigroup and 1 be a T-

define (SxXT) (AxB) = SAxTB and (A xB)
(SxT) = ASx BT, where A and B are subsets
of S and T, respectively. If A and B are
subsemigroups of S and T, respectively, then
A X B is a subsemigroup of SxT. And let A and
B be left (right) ideal of S and T, respectively,

ideal and let ICT. Then I is a subsemigroup of
S and TUI=T is a subsemigroup of S. Thus

£ = p,Tis a congruence on T. Further-
more let I be an ideal of S. Then I is a S-ideal
since we can take T to be S. Thus o; is a con-
gruence on S.

then A x B is a left (right) ideal of S x T. Further- Proposition (2-14). Let 1 be a T-ideal and a

more let S and U be semigroup and let T,V be
subsemigroup of S and U, respectively and let A
be a T-ideal and B be a V-ideal. Then AXxB is
a Tx V-ideal in Sx U.

subsemigroup of a semigroup S and let Ty I be
a subsemigroup of S. Then TUL/pTUl s 3
semigroup with zero element I and ™! /pTVl=
{I} U {{x}:xe@TuD-I1}.

Definition (2-10). A semigroup S is said to have the Proof : By Proposition 1.13. TUL/p,Tul jg

properties o8 or g if the relation L N L, = L,L,,
R,NR~=R;Ror L,NR,=L,R, hold for left T-
ideals L,, L, and right T-ideals R,, R, of S.

Lemma. Let S be a semigroup having property ¢ (a
or 8) and T be a subsemigroup of S. Then T is
a normal subsemigroup of S.

Proposition (2-11). Let M is a monoid having pro-
perty ¢ (o orf}) and T be a subsemigroup with
identity of M. Then{ mT : m€M} is a monoid.

Proof: Consider an operation as folow
(MmT)nT)=mnT for any m,nEM. Then the
operation is well defined since T is a normal
subsemigroup of M and T has an identity. And
associative property is evident since M is
associative. Now €T =T is an identity in {mT :
me& M}, where e is an identity in M. Hence {mT

a semigroup of the quotient sets with
operation (x 0, TUI)(yp,TU1) =xyp TUL.
Now we must show that I is a zero
element in TU'/p TU! and TULp, TUI =
{I1lu {{x}:x=(TUI)-1}:For any x,ys
I xp,TV'=1I and y ofV'=1. Here (xa™"
(y oTU)=(xy)p,TV'=Isince x and y belong
to I. And if x&(TUI )-I and y=I1, then
xPTV={x} and {x}I=(xp"V") (yAT"H)
=xyo'V"'=1 and I {x}=1I for any y=I.
That is,aI=al=1 for any as TV pTul,
Second ™! /p,TUl={T1}{{x}: x=(TUD-I}.
By the definition TV /gTVl= {xp/TV! :x &
TUL}. Here if xeI, then x0,TV=] since
ATV = IxDU1ry; and if x&ZIthen xp™!
=x.Thus Thus TV TVI={I}{x} 1 x=
(TUD-1}.

:m M} is a monoid. Proposition(2-15). Let 1,] be T-ideal of

Proposition (2-12). Let I be a T-ideal and a
subsemigroup of a semigroup S and let IUT be

a semigroup S such that [SJZT.

Then T/ o"~(T/B)/ (o7 /0").

a subsemigroup of S. Thene[V! = (IXDU Iy | Proof : Define f as follows;(apT)B8=ag’

is a congruence on TUI.

Proof: For any x€ TUI (x,x)E lty; S 2™ . If
(a,b)e o, ™! , then (a,b)E IxIor (a,b)Elqy .
Thus (b,a)€IxI or (b,a)€ lty;, that is,
(b,a)e p,™! If (a,b)eo™  and .
(b,0)ER, ™, then (a,b)eIx 1 or (a,b)E 11y, ; and
(b,o)€IxI or (b,c) <lty;. Thus (a,c)sp, TV
for every case. If (a,b)€pTY! and
@',b)€ p, T, then (aa’,bb)e ;™" since I is
a subsemigroup of S and I is a T-ideal. Hence
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for any acT, Then [(ap,")(ba")) Bab
A B=abpT=(ap ™) (bo N =(an") B
(bp™) B.And Ker f=gof '={(ap”, bp™)
eT/TxXT/0T :(ap,™) B=(bT) B} =
{(apT, b ™ET,/ 0T/, : ap;T=bp,}
=p/7/piT. Now we define a as follow
ap™ o7 /o a=ap.

Hence a: (T/0,")/(e)"/0") > T/p"
is an isomorphism,
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