The Isomomorphism of Relative Ideals

Hyun Jin-oh, Ko Youn-hee

상대적 Ideals 의 동형사상

玄進五・高胤熙

Introduction

In [1] J.M. Howie has explained the basic properties of semigroup and studied the congruence on a semigroup and proved the isomorphism of the quotient set of a semigroup by the congruence relation.

In [2] T.K. Dutta has defined the relative ideal and studied the properties of relative ideal.

Now we will review the properties of a semigroup and relative ideal. And we will apply the isomorphism of the quotient set of a semigroup by the congruence relation to the isomorphism of the quotient set of relative ideal by the Rees congruence relation.

I. Definitions and Preliminarlies

- **Definition (1-1).** We will say that (S, \cdot) is a semigroup if (xy)z = x(yz) for any $x, y, z, \in S$.
- **Definition (1-2).** If a semigroup (S, \cdot) has the additional property that xy = yx for any $x, y \in S$, it is called a commutative semigroup.
- **Definition (1-3).** If a semigroup (S, \cdot) has an element 1 such that x1 = 1x for any $x \in S$, 1 is called an identity (element) of S and S is called a semigroup with identity, or monoid.
- Definition (1-4). If A and B are subsets of a

semigroup, we write $AB = \{ab:a \in A, b \in B\}$ and $\{a\}B = a B = \{ab:b \in B\}$ for $a \in S$.

- **Definition** (1-5). If (S, \cdot) is a semigroup, then a nonempty subset T of S is called a subsemigroup of S if $xy \in T$ for any $x, y \in T$.
- **Definition** (1-6). A nomempty subset A of a semigroup S is called a left ideal if $SA \subseteq A$, a right ideal if $AS \subseteq A$, and an idela if it is both a left and right ideal.
- **Definition (1-7).** If x is a nonempty set, then a subset ρ of X × X is called a relation on X. X × X is called a universal relation and $1x = \{(x,x):x \in X\}$ is called the equality relation.
- **Definition (1-8).** Let $\beta(S)$ be the set of all relations on X and let $\rho, \sigma \in \beta(X)$. Then we define a binary operation on $\beta(X)$ as follows; if ρ , $\sigma \in \beta(X)$, then $\rho \circ \sigma = \{(x,y) \in X \times X :$ $\exists z \in X \ni (x,y) \in \rho$ and $(z,y) \in \sigma \}$.
- **Definition (1.9).** $\rho^{-1} = \{(x,y) \in X \times X : (y,x) \in \rho \}$ is called the inverse of ρ
- Definition (1-10). A relatin ρ is called an equivalence relation if (i) (x,x) ∈ ρ for every x ∈ X : reflexive (ii) ρ = ρ⁻¹: symmetric (iii)ρ₀ρ ⊆ ρ: transitive.
- **Definition (1-11).** $X/\rho = \{x \ \rho : x \in X\}$ is called the quotient set with an equivalence $\rho \cdot \rho^{\#}$ is called the natural mapping from X onto X/ρ defined by $x \ \rho^{\#} = x \rho$ for any $x \in X$.

- **Definition (1-12).** Let (S, \cdot) be a semigroup. A relation R on S is called left compatible if $(s,t) \in \mathbb{R}$ \Rightarrow (as, at) $\in \mathbb{R}$ and right compatible if $(s,t) \in \mathbb{R}$
- ⇒ (sa, ta)∈R for any s,t,a∈S. R is called compatible if (s,s')∈R and (t,t')∈R ⇒ (st,s't')∈R for any s,t,st'∈S. A compatible equivalence relation is called a congruence.
- **Proposition (1-13).** Let S be a semigroup and let ρ be a congruence on as emigroup S. Then $S/\rho = \{x\rho : x \in S\}$ is a semigroup.
- **Definition (1-14).** If ϑ is a mapping from a semigroup (S, \cdot) into a semigroup (T, \cdot) we say that ϑ is a homomorphism if $(xy)\vartheta = (x\vartheta) (y\vartheta)$ for any $x,y \in S$. We refer to S as the domain of ϑ , to T as the codomain of ϑ , and to the subset $S\vartheta = \{s\vartheta : s \in S\}$ of T as the range of ϑ . If ϑ is one-one we shall call it a monomorphism, and if it is both one-one and onto we shall call it an isomorphism. Ker $\vartheta = \vartheta \cdot \vartheta^{-1} = \{(a,b) \in S \times S : a\vartheta = b\vartheta\}.$
- **Proposition (1-15).** If ρ is a congruence on a semigroup S, then S/ρ is a semigroup w.r.t the operation $(a\rho)(b\rho) = (ab)\rho$ and the mapping ϕ :S defined by $x\rho^{d} = x\rho$ for any $x \in S$ is a homomorphism. If ϕ :S \rightarrow T is a homomorphism, where S and T are semigroups, then the relation Ker $\phi =$ $\phi \cdot \phi^{-1} = \{(a,b) \in S \times S : a\phi = b\phi\}$ is a congruence on S and there is a monomorphimsm a:S/ker ϕ \rightarrow T such that ran $(a) = ran(\phi)$ and the diagram commutes.
- **Proposition (1-16).** Let ρ be a congruence on a semigroup S. If $\phi : S \rightarrow T$ is a homomorphism such that $\rho \subseteq \text{Ker } \phi$ then there is a unique homomorphism $\beta : S/\rho \rightarrow T$ such that ran $(\beta) = ran(\phi)$ and the diagram commutes.
- **Proposition (1-17).** Let ρ , σ be congruences on a semirgroup S such that $\rho \subseteq \sigma$. Then $\sigma/\rho = \{(x\rho, y\rho) \in S/\rho \times S/\rho : (x,y) \in \sigma\}$ is a congruence on S/ρ , and $(S/\rho)/(\sigma/\rho) \simeq S/\sigma$.

II. Relative Ideal for Semigroup

Definition (2-1). Let S be a semigroup and T be a subsemigroup of S. A nonempty subset A of S is called a left T-ideal if TA⊆A. The right T-ideal

is defined anlogously. A nomempty subset A of S is called a T-ideal if it is both left and right T-idea.

- **Example (2-2).** Let M_2 be the set of all 2×2 nonsingular metrices over the field of rational numbers. Then M_2 is a group w.r.t matrix multiplication. Let $T = \{\begin{pmatrix} a & o \\ o & b \end{pmatrix}$: a, b are integers $\}$ and $A = \{\begin{pmatrix} e & f \\ g & h \end{pmatrix}$: e,f,g,h are even integers $\}$. Then A is a left T-ideal as well as a right T-ideal of M_2
- **Remark (2-3).** Let S be a semigroup. Then every ideal in S is a S-idal.
- **Propositon (2-4).** Let S be a semigroup and A be a left (right) T_1 -ideal and a left (right) T_2 -ideal with $T_1 \cap T_2 \neq \phi$. Then A is also a left (right) $T_1 \cap T_2$ -ideal.
- **Proof:** Let $x, y \in T_1 \cap T_2$. Then $x, y \in T_1$ and $x, y \in T_2$. Thus $xy \in T_1$ and $xy \in T_2$ and $T_1 \cap T_2$ is a subsemigroup of S. Since $(T_1 \cap T_2)A \subseteq T_1A \subseteq A$, so A is a left $T_1 \cap T_2$ ideal. In right case we can easily prove.
- **Corollary (2-5).** Let S be a semigroup and let A be a T_1 -ideal and T_2 -ideal with $T_1 \cap T_2 \neq \phi$ Then A is a $T_1 \cap T_2$ -ideal.
- **Proposition (2.6).** Let S be a semigroup and let A be a left T_1 -ideal and right T_2 -ideal with $T_1 \cap T_2 \neq \phi$ Then A is a $T_1 \cap T_2$ -ideal.
- **Proof:** Since $T_1 \cap T_2$ is a subsemigroup and $A(T_1 \cap T_2) \subseteq AT_2 \subseteq A$ and $(T_1 \cap T_2)A \subseteq T_1A \subseteq A$. By the definition A is a $T_1 \cap T_2$ -ideal.
- **Proposition (2-7).** Let S be a semigroup and let A and B be a left (right) T -ideal. Then $A \cap B$ and $A \cup B$ are also left (right) T -ideals.
- **Proof:** Since $TA \subseteq A$ and $TB \subseteq B$, so $T(A \cap B) \subseteq TA \subseteq A$ and $T(A \cap B) \subseteq TB \subseteq B$. Thus $T(A \cap B) \subseteq A \cap B$. If $x \in T(A \cup B)$, $\exists t \in T$, $a \in A \cup B$, $: \exists \cdot x = ta$. Here if $a \in A$, then $x = ta \in TA$ and if $a \in B$, then $x = ta \in TB$. Thus $T(A \cup B) \subseteq (TA) \cup (TB)$ and $TA \subseteq A$ and $TB \subseteq B$. Hence $T(A \cup B) \subseteq (TA) \cup (TB)$. In right case we can complete the proof (by same method).
- **Corollary (2-8).** Let S be a semigroup and let A and **B** be a T-ideals. Then $A \cap B$ and $A \cup B$ are also T-ideals
- Remark (2-9). Let S and T be semigroup. Then the

direct product $S \times T = \{(s,t) : s \in S, t \in T\}$ is a semigroup for (s,t)(s',t') = (ss',tt'). Now we can define $(S \times T) (A \times B) = SA \times TB$ and $(A \times B)$ $(S \times T) = AS \times BT$, where A and B are subsets of S and T, respectively. If A and B are subsemigroups of S and T, respectively, then $A \times B$ is a subsemigroup of $S \times T$. And let A and B be left (right) ideal of S and T, respectively, then $A \times B$ is a left (right) ideal of $S \times T$. Furthermore let S and U be semigroup and let T,V be subsemigroup of S and U, respectively and let A be a T-ideal and B be a V-ideal. Then $A \times B$ is a $T \times V$ -ideal in $S \times U$.

- **Definition (2-10).** A semigroup S is said to have the properties α , β or ρ if the relation $L \cap L_2 = L_1L_2$, $R_1 \cap R_2 = R_1R_2$ or $L_1 \cap R_1 = L_1R_1$ hold for left Tideals L_1 , L_2 and right T-ideals R_1 , R_2 of S.
- Lemma. Let S be a semigroup having property ϱ (a or B) and T be a subsemigroup of S. Then T is a normal subsemigroup of S.
- **Proposition (2-11).** Let M is a monoid having property ϱ (a orß) and T be a subsemigroup with identity of M. Then { mT : m \in M} is a monoid.
- **Proof:** Consider an operation as folow (mT)(nT) = mnT for any $m, n \in M$. Then the operation is well defined since T is a normal subsemigroup of M and T has an identity. And associative property is evident since M is associative. Now eT = T is an identity in $\{mT : m \in M\}$, where e is an identity in M. Hence $\{mT : m M\}$ is a monoid.
- **Proposition (2-12).** Let I be a T-ideal and a subsemigroup of a semigroup S and let $I \cup T$ be a subsemigroup of S. Then $\rho_I^{T \cup 1} = (IXI) \cup 1_{T \cup I}$ is a congruence on $T \cup I$.
- **Proof:** For any $x \in T \cup I$ $(x,x) \in I_{T \cup I} \subseteq \rho_I^{T \cup I}$. If $(a,b) \in \rho_I^{T \cup I}$, then $(a,b) \in I \times I$ or $(a,b) \in I_{T \cup I}$. Thus $(b,a) \in I \times I$ or $(b,a) \in I_{T \cup I}$, that is, $(b,a) \in \rho_I^{T \cup I}$ If $(a,b) \in \rho_I^{T \cup I}$ and $(b,c) \in \rho_I^{T \cup I}$, then $(a,b) \in I \times I$ or $(a,b) \in I_{T \cup I}$ and $(b,c) \in I \times I$ or $(b,c) \in I_{T \cup I}$. Thus $(a,c) \in \rho_I^{T \cup I}$ for every case. If $(a,b) \in \rho_I^{T \cup I}$ and $(a',b') \in \rho_I^{T \cup I}$, then $(aa',bb') \in \rho_I^{T \cup I}$ since I is a subsemigroup of S and I is a T-ideal. Hence

 $\rho_1^{T \cup I}$ is a congruence on $T \cup I$.

- **Remark (2-13).** Let S be a semigroup and I be a Tideal and let $I \subseteq T$. Then I is a subsemigroup of S and $T \cup I = T$ is a subsemigroup of S. Thus $\rho_I^{T \cup I} = \rho_I^T$ is a congruence on T. Furthermore let I be an ideal of S. Then I is a S-ideal since we can take T to be S. Thus ρ_I is a congruence on S.
- **Proposition (2-14).** Let I be a T-ideal and a subsemigroup of a semigroup S and let $T \cup I$ be a subsemigroup of S. Then T^{UI} / ρ_I^{TUI} is a semigroup with zero element I and $T^{UI} / \rho_I^{TUI} = \{I\} \cup \{\{x\} : x \in (T \cup I) I\}.$
- **Proof:** By Proposition 1.13. ${}^{\text{TUI}} / \rho_1^{\text{TUI}}$ is a semigroup of the quotient sets with operation $(x \rho_1^{\text{TUI}})(y \rho_1^{\text{TUI}}) = xy \rho_1^{\text{TUI}}$. Now we must show that I is a zero element in ${}^{\text{TUI}} / \rho_1^{\text{TUI}}$ and ${}^{\text{TUI}} / \rho_1^{\text{TUI}} =$
- {I}u {{x}:x=(T \cup I)-I} For any x, y= I x $\rho_1^{T \cup I} = I$ and $\gamma \rho_1^{T \cup I} = I$. Here $(x \rho_1^{T \cup I})$ $(\gamma \rho_1^{T \cup I}) = (x\gamma)\rho_1^{T \cup I} = I$ since x and y belong to I. And if $x \in (T \cup I) - I$ and $y \in I$, then $x \rho_1^{T \cup I} = {x}$ and ${x} I = (x \rho_1^{T \cup I}) (\gamma \rho_1^{T \cup I})$ $= x\gamma \rho_1^{T \cup I} = I$ and I {x}=I for any $\gamma \in I$. That is, $\alpha I = \alpha I = I$ for any $\alpha \in {^{T \cup I}} \rho_1^{T \cup I}$. Second ${^{T \cup I}} / \rho_1^{T \cup I} = {I} \cup {x}: x \in {(T \cup I)} - I$. By the definition ${^{T \cup I}} / \rho_1^{T \cup I} = {x\rho_1^{T \cup I} : x \in I}$. TUI}. Here if $x \in I$, then $x \rho_1^{T \cup I} = I$ since $\rho_1^{T \cup I} = (IxI) \cup 1_{T \cup I}$ and if $x \not\in I$, then $x\rho_1^{T \cup I} = x$. TUI)-I}.
- **Proposition**(2-15). Let I, J be T-ideal of a semigroup S such that $I \subseteq J \subseteq T$. Then $T/\rho_I^T \simeq (T/\rho_I^T)/(\rho_I^T/\rho_I^T)$.
- **Proof**: Define β as follows; $(a \rho_1^T) \beta = a \rho_j^T$ for any $a \in T$. Then $[(a \rho_1^T) (b \rho_1^T)] \beta = (ab \rho_1^T) \beta = (ab \rho_1^T) \beta = (a \rho_1^T) \beta$ $(b \rho_1^T) \beta$. And Ker $\beta = \beta o \beta^{-1} = \{(a \rho_1^T, b \rho_1^T) \}$ $(b \rho_1^T, b \rho_1^T, T/\rho_1^T; (a \rho_1^T) \beta = (b \rho_1^T) \beta \} = \{(a \rho_1^T, b \rho_1^T) \in T/\rho_1^T \times T/\rho_1^T; a \rho_1^T = b \rho_1^T \} = \rho_1^T/\rho_j^T$. Now we define α as follow $[(a \rho_1^T) \rho_1^T/\rho_1^T) \alpha = a \rho_1^T$. Hence $\alpha : (T/\rho_1^T)/(\rho_1^T/\rho_1^T) \rightarrow T/\rho_1^T$ is an isomorphism.

4 Cheju National University Journal Vol. 19 (1984)

Literature cited

Howie, J.M. 1976 An introduction to semigroup theory, Academic Press.

Dutta, T.K. 1982 Relative ideals in groups, Kyungpook Math. J. 22. Allen, P.J. 1969 A fundamental theorem of homomorphism for semiring, Proc. Amer. Math. Soc. 21.

國文抄錄

본 논문에서는 Congruence 관계에 의한 반군들의 Quotient 집합에 대한 동형을 Rees Con gruence 관계에 의한 상대적 Ideals의 Quotient 집합에 적용시켜 보았다.