A Transformation in the Product of Wiener Spaces
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Summary

In this paper we extend Bearman’s results, rotations in the product of two Wiener spaces, and give
several results which prove useful in dealing with transformations in Wiener space.

1. Introduction

Let T=[0,1] and let C,(T) denote Wiener space,
that is, the space of real-valued continuous func-
tions on T which vanish at t=0, Let O=t0 <t1<..<
ty=1 and let - < o < ﬁi Koo i=1},2,..,n Sub-
sets of C(T) of the type

I={ xCT o <x(t)<Byi=1.2,..n}

are called intervals. We denote the class of all
intervals 2. It can be shown that £ is semi-algebra,

Now we defined a set function m on £ as follows;

Bl B8 - =
.my=f " Wpit,u)du ... dug
a, o,
where T = (tI L ta, ., tn),_ﬁ = (uy, u,q, ..., un) and

> n
W(t,u) = ( (2m" iT=F1(ti.ti_,)} i

n (u.—u' )2
i i1 =
exp E)EI - 2(t1.t‘_1) J y (uo 0)

m, is countably additive on £ and can be extended
in the usual way to the c-algebra o(f) generated
by the intervals and then can be further extended
s0 as to be a complete measure, This completed
measure space is denoted by (Co(T), ,81’ m,) and

of, is called the class of Wiener measurable sets.

For xeCo(T), let 'Ixll = max Ix(t)l. Then

tefo.1)
(CO(T), |I*]]) is a separable Banach space.

Let B be the collection of all sets of the form
¥ (B) for all T and all Borel sets B in R". ThenB
is an algebra of subsets of Co(T). Let o(B) be the
g-algebra generated by B and B(Cy(T)) be the class
of Borel sets in Cqy(T).
that a(2) = 0(B) =8(C,(T)).

In [1] Bearman obtained the results; Let R de-

Then it is well known

note the linear transformation from the plane to
the plane which rotates each vector through an
angle 0. Let
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Ry(u,v) = (U,V)

where U=ucosf —vsind, V=usinf +vcosf). Define
R; . CO(T) X Co(T) —’Co(T) X CQ(T) to be R;(X, y)
=(X, Y) by Ro(x(t), y(t)). Then

]
- ) -1
m, xm =(m, xm,)"(Ry)

on B{Co(T) x Co(T).

In this paper we extend Bearman's results, and
give several results which prove useful in dealing
with transformations in Wiener space.

2. Transformations in the Product
of Wiener Spaces.

u, and ut, Wy,

systems of Cartesian coordinates, Let

Let u;, u,, ., ., uf be any two

= +
v=y, e, v, €, + ...+ vnen

=y¥e* 4 v'e‘ + .

*a®
11 +"n°n

be the representations of a given vector v in these
two coordinate sstems; here €, -y € and el‘, vy
ey are unit vectors in the positive u,

ul‘, vy u!‘l directions respectively, We adopt the

y -y Up and

notation

$s @, =
el.e a

5= 8y (i,j=1,2,.,n)

Then we have

v¥= ¥ a.v

i 5 i Y (i=1,2,..,n)

A similar consideration leads to the inverse formulas

n

.= Z a.v* ji=1,2,..,n

v 2 2 v, Gg )
Furthermore

0 (G#m)

El % 4%m =1, G=m)

If both coordinate systems under consideration are
right-handed, then the determinant,

a“ e am
=1
3y -+ App
Let T:R" > R" to be T(v, _ . vp) = (Vy, L,
V), where v, = 1—21 v, i i=12,.,n ThenT

and T preserve Euclidean distance in R® and inner
product as well as Lebesgue measure,

Theorem 2:1. If T*: C,(T)" > C (T)" to be
()(I s eeny Xn) =T*x,, ..., xn) by

Xi(t)- E a. x(t) te [0, 1]

and i = 1,2,
B(C, (DY),
Proof. Since the intervals generate b(Co(T)),
the set of the form I x..xIy generateB(Co(T))n.
We may assume that 1, I, ...

vy I, then-?ml = (-‘l‘—m‘ ) (T*)! on

» I are based on
the same restriction points. Let

n
I { (X1, .y %) £ 05 <(OB;,
S VS Swj, i=1,2,..., m}
Then

n n
ar m, ) (ll-l]- ]i) =m, (Il )ml (Iy) ... m, (ln)

P
am

L dv? ]
m

([(21r)"‘ 7"“2 (ti—ti_l)]""f:' f:’"‘ exp ('}':' -
i= .

m =l

([(zn)m T LT
@

v'-vli)?

exp ( xEn i bl

) dv! .
i=1 2 ti'ti- 1 ) 1

(v“.—v?‘l)2 N .
m )}dv d'h
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n
= [(2m)™ n (t -t”)] Jﬁ'"
"‘l
i )2

(A nm (V 1_] N
- exp £ X -———"- dV! |
J-m plll-l 2(t i) !
avi. dvi..dvl ..dvp,

by the change by variables sending (v}, ey v?)
to (v;, v;') = T(v} v, i=1,2, ..,
the Fubini theorem, and hence

m, and

I m, =G m) ey
on B(CO(T))".
The next result follows immediately from

Theorem 2-1 and the integral transport formula
(3].

Corollary 2.2, F(x,, .., x ) is measurable on
(Co(T)R 81 if and only if F(T‘(x e X)) i
measurable on (Co(T)", ,Jn) and in this case, we
get

F(x, .., x ) dlgm, XX, , ., Xp)

Co (T)n n

=f L FTxg, e x ) depm, XX, X))

Co (M) n

n
= F(Eax , X oa_.x)
GQm" =l V= W

d({ll- m, Xx,, ..., xn).

Corollary 2.3, ¢ is a measurable function on
Co(T) if and only if (,0(2 a; x) is measurable on
(C(,(Tf1 ,8") for some i and we have

I AXdmy (X) =
cm I c,m”

Prof. Let F(X,, ... , X )=y (Xi) for some i (1<
i<n), Then

n
go(j2=31 aijxj)(xl 3 ey xn).

. n
X.)dm, (X)=f F(X,,..,X )d(Im,)
I MO e X )

X, .., X))

n

n
2. a_.X.)

=/ mnF( 21 3%y 81 i

d( ﬂm, )(x,, ... ,xn)

n
¢(Jlauxj)d(ﬂm)(x n)

= ey
Corollary 24. LetP, P, ..,
numbers, Then ¢ (/P? + + Py w)is Wienel{

measurable as a function of w 1f and only if ¢ ( E
P;x) is measurable on (Co(T)", M) and in this case

P_ be positive real

n
r Y P2w) dm, (w) = z
'c,cf)( =11 ) dm, () fc,m*(:-lplxl)

n

dMm,)(x,, .. ,xn).
Proof, Let

= =

TP P2

k=1 k E=1 k

in Corollary 2-3, Then

\/Z‘ P’X)dm. (X)

Co(T) k=1

E P.x.
c.(T)'f(Fl ”)

d(l] m, ) (x,,..., xn)

Let o, be the partition 0=t,<t, < ... < t,n=1

where tk=k—rl for k=0, 1,2, ... , 2" Given x in
2
o0
2
Co(T), let San(x)=k2 [x(t,) - x(t, DI
For A >0, let

CA E[x in Co(T) :nl—i»'?- Son(x)=)\2 ]
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4 = T+ 3

and let ] 7——
DE{x in Co(T) : lim So (x) fails to exmt} .= L V E szy T(Z) = PzZ

Note that ;\ C, =C )

Let my be the Borel measure given by

m)\(B)=m,()\" B) Then T is a measurable transformation. For any

real a,
for B in 8(Cy(T)). Since m,(C,)=1 and X\ Cy=
C,, we see that my is concentrated on the Borel (T (@, ) = T (@, «) e,
set Cy: i.e.m)\(C)‘)=l. Let ,Z)\ denote the g-algebra \/'ZIP?
obtained by completing (Co(T), B(Co(T)), m)\). =
Theorem 2-5. Let P,, .., P be positive num-  if and only if {'' (a, *) e §
bers. The following assertions are equivalent:
. S f(Z)dm (2)=¢f (foTHZ)dm, (Z)

‘R /n
(af / ‘21 P? Z) is an m, -measurable function of Z Co (M) 1EIP2 &m

i= =
(b) (Z) is anm measurable function of Z —é’mf( izlpi Z)dm, (2)

I

v TP
11
n
() f( _E x) is an mp X ..oX mpn-measurable {c) # (d). Consider g : Co(T)™ =Co(T) (by ¥(x, , ...,

1

functlon of Xy, oon , X o n
n X )=2Z x)
Tog=11
(df ( Z P x ) i an m, X ... X m, -measurable
functlon of xl v X : and n onl a D n
T: (Co(T) ,:‘, ,'lm. ) (Co(T) ,_ﬂl ’JPi’il—]lmpA)
i= i
If any one (and hence all) of (a)-(d) hoids, then
(by T(x,, ..., xn) =Py Xy, on s pnxn))‘Then ¢ is con-

;of (F P’ Z) dm, (Z)% tinuous, and T is measurable, For any real a,

C, (M
=f f(2)dm A (D)™ (a, ) T ((fop)” (e, «))e 41
Co (M) n
if any only if
)] o0 o Jp
= f(Ex)d(']m p) (k) ()" (o, =) e IR

Co(TiNi=1
= S/ f(Z x)d( U ) (X, .., X))
fco(Tf) (E P )d(qm‘ Y xn) c,m" i=l mP n
n
where be £ we mean that if either side exists, both (o) (x,, ..., x ) d( Il m ) T'(x,,...,x)
C., m n n

sides exist and they are equal
=f f(EPx)d(ﬂml)(X,,...,x)
(M =l n
Proof. (a) ¢ (b)
(a) # (d). By Corollary 2-4,

Consider T : (Cy (T), 4, , m,) >(Co(T),
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