A Transformation in the Product of Wiener Spaces

Jin-oh Hyun • Bong-soo Ko

直積위너空間의 變換

玄 進 五 · 高 鳳 秀

Summary

In this paper we extend Bearman's results, rotations in the product of two Wiener spaces, and give several results which prove useful in dealing with transformations in Wiener space.

1. Introduction

Let T=[0,1] and let $C_0(T)$ denote Wiener space, that is, the space of real-valued continuous functions on T which vanish at t=0, Let $0=t < t < ... < t_n = 1$ and let $-\infty \le \alpha_i \le \beta_i \le \infty$, i = 1, 2, ..., n. Subsets of $C_0(T)$ of the type

$$I = \left\{ : x \in C_0(T) : \alpha_i < x(t_i) \leq \beta_i, i = 1, 2, ..., n \right\}$$

are called intervals. We denote the class of all intervals ℓ . It can be shown that ℓ is semi-algebra. Now we defined a set function m on ℓ as follows;

$$. \ \mathfrak{m}_{1}(\mathbf{I}) = \int_{\alpha_{1}}^{\beta_{1}} \cdots \int_{\alpha_{n}}^{\beta_{n}} W_{n}(\mathbf{t}, \mathbf{u}) du_{1} \dots du_{n}$$

where $\vec{t} = (t_1, t_2, ..., t_n), \vec{u} = (u_1, u_2, ..., u_n)$ and

$$\mathbf{W}(\vec{t}, \vec{u}) = \left((2\pi)^n \frac{n}{i!} (t_i - t_{i-1}) \right)^{-1/2}$$

$$\exp\left\{\sum_{i=1}^{n} - \frac{(u_i - u_{i-1})^2}{2(t_i - t_{i-1})}\right\} , (u_0 = 0).$$

 m_1 is countably additive on ℓ and can be extended in the usual way to the σ -algebra $\sigma(\ell)$ generated by the intervals and then can be further extended so as to be a complete measure. This completed measure space is denoted by $(C_0(T), \mathcal{G}_{1, m_1})$ and \mathcal{G}_1 is called the class of Wiener measurable sets.

For $x \in C_0(T)$, let $||x|| = \max_{\substack{t \in \{0,1\}}} |x(t)|$. Then $(C_n(T), ||\cdot||)$ is a separable Banach space.

Let \mathcal{B} be the collection of all sets of the form $J_{\vec{t}}$ (B) for all \vec{t} and all Borel sets B in \mathbb{R}^n . Then \mathcal{B} is an algebra of subsets of $C_0(T)$. Let $\sigma(\mathcal{B})$ be the σ -algebra generated by \mathcal{B} and $\mathcal{B}(C_0(T))$ be the class of Borel sets in $C_0(T)$. Then it is well known that $\sigma(\mathfrak{A}) = \sigma(\mathcal{B}) = \mathcal{B}(C_0(T))$.

In [1] Bearman obtained the results; Let R denote the linear transformation from the plane to the plane which rotates each vector through an angle θ . Let

- 131 -

 $R_A(u,v) = (U,V)$

where U=ucos θ -vsin θ , V=usin θ , +vcos θ . Define $R_{\theta}^{\bullet}: C_0(T) \ge C_0(T) \Rightarrow C_0(T) \ge C_0(T)$ to be $R_{\theta}^{\bullet}(x, y)$ = (X, Y) by $R_{\theta}(x(t), y(t))$. Then

$$m_1 \times m_1 = (m_1 \times m_1) \cdot (R_{\rho}^{\dagger})^{-1}$$

on $\mathcal{B}(C_0(T) \times C_0(T))$.

In this paper we extend Bearman's results, and give several results which prove useful in dealing with transformations in Wiener space.

2. Transformations in the Product of Wiener Spaces.

Let $u_1, u_2, ..., u_n$ and $u_1^*, u_2^*, ..., u_n^*$ be any two systems of Cartesian coordinates. Let

$$v = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

= $v_1^* e_1^* + v_2^* e_2^* + \dots + v_n^* e_n^*$

be the representations of a given vector v in these two coordinate sstems; here $e_1, ..., e_n$ and $e_1^*, ..., e_n^*$ are unit vectors in the positive $u_1, ..., u_n$ and $u_1^*, ..., u_n^*$ directions respectively. We adopt the notation

$$e_i^* \cdot e_j = a_{ij}$$
 (i,j = 1,2,...,n)

Then we have

$$\mathbf{v}_{i}^{*} = \sum_{j=1}^{n} \mathbf{a}_{ij} \mathbf{v}_{j}$$
 (i = 1,2, ..., n)

A similar consideration leads to the inverse formulas

$$v_j = \sum_{i=1}^{n} a_{ij} v_j^*$$
 (j = 1, 2,, n)

Furthermore

$$\sum_{i=1}^{n} a_{ij} a_{im} = \begin{cases} 0 & (j \neq m) \\ 1 & (j = m) \end{cases}$$

If both coordinate systems under consideration are right-handed, then the determinant,

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{n1} & \dots & a_{mn} \end{vmatrix} = 1$$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ to be $T(v_1, ..., v_n) = (V_1, ..., V_n)$, where $V_i = \sum_{j=1}^n a_{ij}v_j$, i = 1, 2, ..., n. Then T and T^{-1} preserve Euclidean distance in \mathbb{R}^n and inner product as well as Lebesgue measure.

<u>Theorem 2.1.</u> If $T^{\bullet}: C_0(T)^n \rightarrow C_0(T)^n$ to be $(X_1, ..., X_n) = T^{\bullet}(x_1, ..., x_n)$ by

$$X_{i}(t) = \sum_{j=1}^{n} a_{ij} x_{j}(t) \ t \in [0, 1]$$

and i = 1, 2, ..., n, then $\frac{n}{T} m_1 = (\frac{n}{T} m_1) (T^*)^{-1}$ on $\mathcal{B}(C_0(T)^n)$.

Proof. Since the intervals generate $\mathcal{B}(C_0(T))$, the set of the form $I_1 \times ... \times I_n$ generate $\mathcal{B}(C_0(T))^n$. We may assume that $I_1, I_2, ..., I_n$ are based on the same restriction points. Let

$$\begin{array}{c} \underset{i=1}{\overset{n}{\amalg}} & I_i = \left\{ (x_1, ..., x_n) : \alpha_i < x(t) \leq \beta_i, \\ & \dots, \psi_i < x(t) \leq \omega_i, i=1, 2, ..., m \end{array} \right\}$$

Then

$$\begin{pmatrix} \mathbf{n} \\ (\Pi \mathbf{m}_{1}) & (\prod_{i=1}^{\Pi} \mathbf{I}_{i}) = \mathbf{m}_{1} (\mathbf{I}_{1}) \mathbf{m}_{1} (\mathbf{I}_{2}) \dots \mathbf{m}_{1} (\mathbf{I}_{n})$$

$$= \left\{ \left[(2\pi)^{\mathbf{m}} \quad \prod_{i=1}^{\Pi} (t_{i} - t_{i-1}) \right]^{-1/2} \int_{\alpha_{1}}^{\beta_{1}} \dots \int_{\alpha_{m}}^{\beta_{m}} \right.$$

$$\exp \left(\sum_{i=1}^{m} - \frac{(\mathbf{v}_{1}^{i} - \mathbf{v}_{i-1}^{i})^{2}}{2(t_{1} - t_{i-1})} \right) d\mathbf{v}_{1}^{1} \dots d\mathbf{v}_{m}^{1} \right\} \dots$$

$$\left[(2\pi)^{\mathbf{m}} \quad \prod_{i=1}^{\mathbf{m}} (t_{i} - t_{i-1}) \right]^{-1/2} \int_{\alpha_{1}}^{\omega_{1}} \dots \int_{\alpha_{m}}^{\omega_{m}} \exp \left(\sum_{i=1}^{m} t_{i} \right)^{2} d\mathbf{v}_{i}^{1} \dots d\mathbf{v}_{m}^{1} \right] \dots$$

$$\frac{\left(\mathbf{v}_{i}^{n}-\mathbf{v}_{i-1}^{n}\right)^{2}}{2\left(t_{i}-t_{i-1}\right)}\right) d\mathbf{v}_{1}^{n} \dots d\mathbf{v}_{m}^{n}$$

- 132 -

$$= [(2\pi)^{m} \prod_{j=1}^{m} (t_{1}-t_{j-1})]^{\frac{n}{2}} \int_{\alpha_{1}}^{\beta_{1}} \dots \int_{\psi_{1}}^{\omega_{n}} \dots \int_{\alpha_{m}}^{\beta_{m}} \dots \int_{\alpha_{m}}^{\beta_{m}} \dots \int_{\psi_{m}}^{\beta_{m}} \exp \frac{n}{j=1} \sum_{i=1}^{m} -\frac{(V_{i}^{j}-V_{i-1}^{j})^{2}}{2(t_{i}-t_{i-1})} dV_{1}^{i} \dots dV_{1}^{n} \dots dV_{m}^{n},$$

by the change by variables sending $(v_i^1, ..., v_i^n)$ to $(V_i^1, ..., V_i^n) = T(v_i^1, ..., v_i^n)$, i = 1, 2, ..., m, and the Fubini theorem, and hence

$$\frac{\mathbf{n}}{\mathbf{T}}\mathbf{m}_{1} = (\frac{\mathbf{n}}{\mathbf{T}}\mathbf{m}_{1})(\mathbf{T}^{\bullet})^{-1}$$

on $\boldsymbol{\beta}(C_0(T))^n$

The next result follows immediately from Theorem 2-1 and the integral transport formula [3].

<u>Corollary 2-2.</u> $F(x_1, ..., x_n)$ is measurable on $(C_0(T)^n \mathscr{G}_1^n)$ if and only if $F(T^*(x_1, ..., x_n))$ is measurable on $(C_0(T)^n, \mathscr{G}_1^n)$ and in this case, we get

$$\begin{split} &\int_{C_{0}(T)^{n}} F(x_{1},...,x_{n}) \, d(\frac{n}{4}m_{1})(x_{1},...,x_{n}) \\ &= \int_{C_{0}(T)^{n}} F(T^{*}(x_{1},...,x_{n})) \, d(\frac{n}{4}m_{1})(x_{1},...,x_{n}) \\ &= \int_{C_{0}(T)^{n}} F(\sum_{j=1}^{n} a_{ij}x_{j},...,\sum_{j=1}^{n} a_{nj}x_{j}) \\ &\quad d(\frac{n}{4}m_{1})(x_{1},...,x_{n}). \end{split}$$

Corollary 2-3. φ is a measurable function on $C_0(T)$ if and only if $\varphi(\sum_{j=1}^n a_{ij}x_j)$ is measurable on $(C_0(T)^n, g_1^n)$ for some i and we have

$$\int_{C_{\mathfrak{q}}(\mathsf{T})} \varphi(\mathsf{X}_{j}) d\mathfrak{m}_{i}(\mathsf{X}_{i}) = \int_{C_{\mathfrak{q}}(\mathsf{T})} \varphi(\sum_{j=1}^{n} \mathfrak{a}_{ij}\mathsf{X}_{j})(\mathsf{x}_{1}, ..., \mathsf{x}_{n}).$$

<u>**Prof.**</u> Let $F(X_1, ..., X_n) = \varphi(X_j)$ for some i (1 i < n), Then

$$\int_{C_{0}(T)} \varphi(X_{i}) dm_{i}(X_{i}) = \int_{C_{0}(T)} F(X_{i}, ..., X_{n}) d(\Pi_{m_{1}})$$

$$(X_{i}, ..., X_{n})$$

$$= \int_{C_{0}(T)} F(\sum_{j=1}^{n} a_{ij}x_{j}, ..., \sum_{j=1}^{n} a_{nj}x_{j})$$

$$d(\Pi_{m_{1}})(x_{i}, ..., x_{n})$$

$$= \int_{C_{n}(T)} \varphi(\sum_{j=1}^{n} a_{ij}x_{j}) d(\Pi_{m_{1}})(x_{i}, ..., x_{n})$$

<u>Corollary 2-4.</u> Let $P_1, P_2, ..., P_n$ be positive real numbers. Then $\varphi(\sqrt{P_1^2 + ... + P_n^2} \omega)$ is Wiener measurable as a function of ω if and only if $\varphi(\sum_{i=1}^{\infty} P_i x)$ is measurable on $(Co(T)^n, g_1^n)$ and in this case

$$\int_{C_0(T)} \frac{\varphi(\sqrt{\sum_{i=1}^{n} P_i^2} \omega) dm_1(\omega) = \int_{C_0(T)} \varphi(\sum_{i=1}^{n} p_i x_i) d(\prod_{i=1}^{n} m_1) (x_1, \dots, x_n).$$

Proof. Let

$$a_{i1} = \frac{P_2}{\sqrt{\sum_{k=1}^{n} P_k^2}}, \dots, a_{in} = \frac{P_n}{\sqrt{\sum_{k=1}^{n} P_k^2}}$$

in Corollary 2-3. Then

$$\int_{C_{0}(T)} \varphi(\sqrt{\sum_{k=1}^{n} P_{k}^{2}} X_{i}) dm_{i} (X_{i}) = \int_{C_{0}(T)} \varphi(\sum_{j=1}^{n} P_{j} X_{j}) d(\prod_{n=1}^{n} m_{i}) (x_{1},...,x_{n})$$

Let σ_n be the partition $0=t_0 < t_1 < ... < t_2n=1$ where $t_k = \frac{k}{2^n}$ for k=0, 1,2, ..., 2^n . Given x in $C_0(T)$, let $S\sigma_n(x) = \sum_{k=1}^{2^n} [x(t_k) - x(t_{k-1})]^2$ For $\lambda > 0$, let

$$C_{\lambda} \equiv \left[x \text{ in } C_0(T) : \lim_{n \to \infty} S\sigma_n(x) = \lambda^2 \right]$$

- 133 -

4 논 문 집

and let

$$D \equiv \left\{ x \text{ in } C_0(T) : \lim_{n \to \infty} S\sigma_n(x) \text{ fails to exist} \right\}$$

Note that $\lambda C_{\mu} = C_{\lambda\mu}$ Let m_{λ} be the Borel measure given by $m_{\lambda}(B) = m_{1}(\lambda^{-1} B)$

for **B** in β (C₀(T)). Since m₁(C₁)=1 and λ^{-1} C₁= C_1 , we see that m_{λ} is concentrated on the Borel set C_{λ} : i.e. $m_{\lambda}(C_{\lambda})=1$. Let \mathscr{J}_{λ} denote the σ -algebra obtained by completing $(C_0(T), \mathcal{B}(C_0(T)), m_{\lambda})$. Theorem 2-5. Let P₁, ..., P_n be positive num-

bers. The following assertions are equivalent:

(a) f $(\sqrt{\sum_{i=1}^{n} P_i^2} Z)$ is an m₁-measurable function of Z

(b) f(Z) is an m $\sqrt{\sum_{i=1}^{n} P_i^2}$ measurable function of Z $(c) f(\sum_{\substack{i=1\\j=1}}^{n} x_i)$ is an m_{p₁} x ... x m_{p_n}-measurable function of x₁, ..., x_n.

(d) f
$$(\sum_{\substack{i=1\\j=1}}^{n} P.x_i)$$
 is an $m_1 x \dots x m_i$ -measurable function of x_1, \dots, x_n .

If any one (and hence all) of (a)-(d) holds, then

$$\int_{C_{0}(T)} f(\sqrt{\sum_{i=1}^{n} P_{i}^{2}} Z) dm_{1} (Z) \triangleq$$

$$= \int_{C_{0}(T)} f(Z) dm \sqrt{\sum_{i=1}^{n} P_{i}^{2}} (Z)$$

$$= \int_{C_{0}(T)} f(\sum_{i=1}^{n} x_{i}) d(\prod_{i=1}^{n} m_{p_{i}}) (x_{1}, ..., x_{n})$$

$$= \int_{C_{0}(T)} f(\sum_{i=1}^{n} P_{i} x_{i}) d(\prod_{i=1}^{n} m_{i}) (x_{1}, ..., x_{n})$$

where be $\stackrel{\text{\tiny E}}{=}$ we mean that if either side exists, both sides exist and they are equal

Proof. (a) \Leftrightarrow (b)

Consider T : $(C_0(T), \mathcal{J}_1, m_1) \rightarrow (C_0(T),$

$$\sqrt{\frac{n}{\sum_{i=1}^{n} P_{i}^{2}}}, \frac{m}{\sqrt{\sum_{i=1}^{n} P_{i}^{2}}} P_{i}^{2}$$
 by $T(Z) = \sqrt{\frac{n}{\sum_{i=1}^{n} P_{i}^{2}}} Z$.

Then T is a measurable transformation. For any real α ,

$$(f \circ T)^{-1} (\alpha, \infty) = \frac{1}{\sqrt{\sum_{i=1}^{n} P_i^2}} f^{-1}(\alpha, \infty) \epsilon \mathcal{J}_i$$

if and only if $f^{-1}(\alpha, \infty) \in \mathcal{S}$

$$\int_{C_{0}(T)} f(Z) dm \sqrt{\sum_{i=1}^{n} P_{i}^{2}} (Z) = \int_{C_{0}(T)} (f \circ T)(Z) dm_{i}(Z)$$
$$= \int_{C_{0}(T)} f(\sqrt{\sum_{i=1}^{n} P_{i}^{2}} Z) dm_{i}(Z)$$

(c) \Leftrightarrow (d). Consider φ : C₀(T)ⁿ \rightarrow C₀(T) (by φ (x₁, ...,

$$\mathbf{x}_{n} = \sum_{i=1}^{n} \mathbf{x}_{i}$$

and

$$T: (C_0(T)^n, \boldsymbol{\mathcal{J}}_{i}^n, \overset{n}{\boldsymbol{\P}} m_i) \to (C_0(T)^n, \overset{n}{\underset{i=1}{\overset{n}{\underset{j=1}{\atop{}}}} \boldsymbol{\mathcal{J}}_{p_i}^n, \overset{n}{\underset{i=1}{\atop{}}} m_{p_i})$$

(by $T(x_1, ..., x_n) = (p_1 x_1, ..., p_n x_n)$). Then φ is continuous, and T is measurable. For any real α ,

$$(f \circ \varphi \circ T)^{-1} (\alpha, \infty) T^{-1} ((f \circ \varphi)^{-1} (\alpha, \infty)) \epsilon \mathbf{J}_{1}^{m}$$

if any only if

$$(f \cdot \varphi)^{-1} (\alpha, \infty) \epsilon \prod_{I=1}^{n} \mathscr{I}_{P_{I}}^{A} P_{I}$$

$$\int_{C_{0}(T)}^{n} f(\sum_{i=1}^{n} x_{i}) d(\prod_{i=1}^{n} m_{P_{I}}) (x_{1}, \dots, x_{n})$$

$$= \int_{C_{0}(T)}^{n} f(\varphi) (x_{1}, \dots, x_{n}) d(\prod_{m=1}^{n}) T^{-1}(x_{1}, \dots, x_{n})$$

$$= \int_{C_{0}(T)}^{n} f(\sum_{i=1}^{n} P_{i} x_{i}) d(\prod_{m=1}^{n} m_{1}) (x_{1}, \dots, x_{n})$$

$$a) \Leftrightarrow (d). By Corollary 2-4.$$

- 134 -

(

A Transformation in the Product of Wiener Spaces 5

References

- J.E. Bearman, Rotations in the Product of two Wiener spaces, Proc. Amer. Math. Soc., 3, 1952.
- [2] P.R. Halmos, Measure Theory, Springer-Verlag 1978.
- [3] K. Jacobs. Measure and Integral. Academic Press, 1978.
- [4] G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. of Math., 83, 1979.
- [5] Proceedings of Symposia in pure and applied and mathematics. Vol 1, the workshop conference board, Korea.

국문초록

直積위너空間의 變換

특수한 直積위너空間의 變換을 일반적인 直積위너空間으로 확장시키고, 그 變換에서 과생되는 결과들을 얻는다.