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Summary

We have studied theoretically the formallsim describing the nature of coupling in a polar semicon—

ductor binary alloy-electron gas system, and have carried out numerical calculations for a represen-

tative real crystal in the long wavelength limit.

(1) INTRODUCTION

In is well known that in doped polar semicon-
ductors the LO phonon can couple to the electron
plasma when the electron plasma frequency is
comparable to the LO phonon frequency (Singwi,
1966; Mooridian, 1966; Mooridian, 1969).

This is necessarily a coulping that exists only
in the long wavelength limit where the electrons
can exhibit their collective oscillations. The cha-
racteristic parameter defining the region of cou-
pling is the Debye inverse screening length, Kp,
at finite temperatures. Generally the electron
plasma exists for wave vectors K such that K<
Kp, while for shorter wavelengths the plasma
breaks up into single particle excitations. Since
K is typically only a very small fraction of any
reciprocal lattice vector, any theory accounting
for the LO phonon-plasma coupling may safely
neglect dispersion of the phonons, although the
plasma induced dispersion may play an important

role in the resulting mixed modes (Katayama,
1975).

In the above description only a single phonon
mode-the k=0 LO phonon-is significant in con-
sidering lattice-electron gas interactions. Crystals
such as n-GaAs and n-GaP are representative
types. (Here we note that the dopant impurities
may be safely ignored in all further considerations
since their concentration is low-typically on the
order of 1088cm-3 or less-and their mass may be
large so that the optical phonon spectrum of the
lattice shows no effect of their presence.) How-
ever, the picture is somewhat more involved when
one considees a binary alloy such as GaAs, .. P,
where either of two isoelectronic ions occupy every
available equivalennt lattice site. In the low
concentration limit, x<1, there exist well defined
localized vibration modes associated with the widely
separated light ions if the isotopic mass difference
of the two ion types is significant (Montroll,

1955), and the mode

characteristic local
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frequency is then substantially higher than the
k=0 LO phonon frequency associated with the
host lattice. For example, in GaAs;.¢P; with x<
1, the LO phonon frequency of the host GaAs
lattice is approximately 294 cm™! while the local
mode frequency associated with the individual P
jons is approximateiy 350 cm™!. These local modes,
while, as one would expect, only very weakly
mutually coupled by their dipole-dipole interac-
tions in the low concentration limit, may interact
significantly through the electron gas in a manner
analogous to the LO phonon-plasma coupling des-
cribed above(Sirko, 1975; Sham, 1967).

Thus we are led to view the LO phonon-plasma
and the local mode-plasma interacting systens as
special limiting cases of a doped binary alloy
polar semiconductor; in the former case, x, the
impurity ion concentration, is exactly zero, while
in the latter case x<1, and, indeed, the host
lattice is conveniently ignored. We now proceed
to treat the binary alloy-electron gas system over
the entire range 0<x<1.

The outline of the paper is as follows. In sec-
tion I we develop Green’s functions appropriate
to the system of interest by first treating special
subsystems, and generalizing to the alloy-electron
system. We obtain general wave vector dependent
formal results for the Green’'s functions of in-
terest, from which the resonant modes of the
interacting system are directly derived. We
specialize these results to obtain the infinite
wavelength liniits, for which both the Green’s
fuuctions and the resonant frequencies have simple
algebraic structure. In section III we derive an
expression for the dielectric constant of the sys-
tem utilizing the formalism of section II, and in
section IV we discuss extensions of the present
work that are now being investigated by the
authors.

I. Formalism and Coupled Modes

We consider a lattice with either of two ion
types A or B at each equivalent lattice site, Asso-
ciated with each A anp B ion isa third ion of
opposite charge-there are thus two ions per
primitive cell, giving rise to the optical phonon
spectrum. The presence of this third ion type
is nowhere explicitly acknowledged, but when
dealing with A or B ion displacement, of course
it is the relative displacement from the center of
mass of the ion pair in a primitive cell to which
we are referring. Similarly we refer to the
effective mass of the A ion and its oppositely
charged partner simply as m,4, while mp has an
equivalent definition. We suppose the two ion
types, A and B, to be electronically identical,
and with no loss in generality we take m,4 to be
less than mp.

We isuppose there is a concentration, #,, of
doping electrons in a parabolic conduction band
characterized by an effective mass m*. The
electron gas gives rise to plasma oscillations with
the long wavelength plasma frequency given by

mpz=4”r‘ez/5®m* .............................. (¢))

Here ‘e is the high frequency dielectric con-
stant and e is the electron charge. We write the

Hamiltonian of such a system as

where Hp represents the three zero order elemen-
tary excitations of the system,

Ho=Ha+ Hp+ H, «oeooeeeevenoarcoccasncnanns + (3)
and H; contains all the mutual interaction terms..
We have

HA=wA’,2;4 CalD ,,;, aly, weeeee serenes(d)

with w4 the vibration frequency of an A ion-
embedded in an empty lattice (except for its.

oppesitely charged partner), and az,(ai',) is the-

destruction (creation) operator of a docalized
mode at the 7 lattice site with displacement along-
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the u Cartesian component. The occupation num-
ber C.(I) is defined by
ca={

1, if an A ion is at site A
0, otherwise

Of course w4 is just the local mode frequency
in the low A ion concentration limit. We have
set h=1 and will use this convention throughout.
Similarly,

He=wp i% CB(T) bi" Bl y, weoeeeerasraneenee (6)

where wp, b},. brx and Cp(7) have definitions
-analogous to those given above. The assumption
that either an A or B type ion is present at each
lattice site implies that C(7)+Cg(7)=1, for all
7, or equivalently
X4+ Xg=1, «ooerviiiiiiiiiiiii s D)

where X ,4(X3) is the concentration of the A (B)

.ions. The doping electrons in the conduction band

give rise to the term
+
HE=2}IZ* % K2C; Cg, vrevvveeeeniiinnne (8)

where K is the electron wave vector and Ck
+

(CE) is the electron destruction (creation) ope-
rator,
The interaction term may be written as
Hy=Haa+Hpp+Hap+Hag
A Hgp+ Hpp, reoreeeoreecneciinees (9)
Here Hy4 is the A ion interionic dipole-dipole
interaction, Hug is the A ion-electron interaction
.and Hgg is the electronelectron Coulomb interac-
tion. The remaining terms can be similarly de-
scribed. One thus writes
Hua=5%=" = Call) €l
D, T u AT u, A0, wveee Qo
where @, /(") is the second derivative of
‘the interionic potential energy and u,(]) is the
u component of the displacement of the ion at
site 7. The prime in the summation over 7’ in-
dicates exclusion of the 7’=7 term, which itself

was implicitly included in the zero order term
H,4; it provides the potential well in which the

isolated ion oscillates at frequency wy.
The ion displacements can be written as
o 1
A(N= ——=—== (at 2, s 11
(D= g (ajrtafe) an

and @,,/(IT") is given by
d),,’(,ff’): _e*z__“a' (‘1‘) TN ST AT

T
0x,0x," \ 7

where e* is the ion effective charge. Similarly,

we have

Has=4 %' 3 Co(D) Col")

T*
D T 0,80 u,/ B e (13)
and
Hap=_3 2 C4(I) C(I)
1?rrr Tk

DT u, AT w87, ---(14)
The restriction on [’ is relaxed in the last term
as the occupation numbers assure that the 7'=7
term does not contribute to the sum.

The factor of 1/2 is also not present in Eq.
(14) since there is no double counting.

The electron-A ion term arises from the in-
teraction of the dipole at ion site 7 with the local
electric field, E(T),
that results from electron density fluctuations
throughout the crystal. With

Hap=—e* T‘F)Z Call) u (1) E(D)

and

E.(R)y=--%2_ g fdax DY)

€ . |Z—FRI

we find by using Eqs. (11) and (15) that in terms
of the creation and destruction operators

Hag=iTa 2 % Ca(D) (a}s+ar,)
ir &§ T
qu
qZ

We have used ¢(%)= I Cjei%-¥ (assuming a sam-
K

CtqCie il . (16)
&+

ple of unit volume),
The coupling constant 74 is given by
Ya=Amee*/ea)(1/2m 4 )5, -reoree- an
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Of course,

o+
Hpp=i7p ?22 -2.7 Ca(I)(bip+b1,)

% Ciri CEe i@T wovrvrranens (18)
Lastly the electron-electron interaction is just
— _l_ 3 E PN AN ) =
Hep= 2jjd x i () $E)
V(1 E-2'1) (&) $(D,
where V(|X—#'|) is the screened Coulomb poten-
tial

o o e?
V(li-x |)=‘—‘#
€| T—X'|
Expressing V(|%|) in terms of its Fourier
transform

V(,O:Lezz ek X e, a9
€ K

1{2
and the field operators ¢ and ¢* in terms of the

destruction and creation operators Cx and Cg*,

we have
.._l_ > e + * !
Hgg= > s Vela) CK Cori Cg’' Cg.
.............................. @0
where Ve(g@)=4ne/exq%

Since the full system we have just introduced
is inherently complicated, we will find it con-
venient to begin our analysis by treating a sim-
plified subsystem consisting of only a concentra-
tion X4 of A ions randomly located on an empty
lattice with no electrons present (case (i) below).
Subsequently we treat (ii) the two ion (A and B)
alloy without doping electrons and, lastly, (iii)
the full alloy-electron gas system. This procee-
dure will be useful in building a complete de-
scription of the full system as well as setting
forth the calculational proceedures and defini-

tions used throughout this paper.

(i) In the present case the system is described
simply by H=H +Hy,.
generate localized vibration modes are the zero

Here the triply de-

order excitations of the system, and their mutual

interactions are the perturbations that will be

seen to split the modes into longitudinal and trans-
verse components. While this system is easily
treated using lattice dynamics, we proceed by
calculating the A ion displacement Green's fu-
nction defined by

DAu~, Uu'r")=—(T: Lof () ¢f (7DD

Here = is an imaginary time, T, is the Wick’s
imaginary time ordering operator and ¢# (Iv) is

the Heisenberg operator

H r - 3
‘0'4(17)7_ e( AYH A0 f(l) (HAYHAA)
.............................. 2y
with
HOE a;’+a,, ........................... @3

The angular brackets indicate thermal averaging -
As usual D4 may be expanded in terms of powers
of Ha4 and the zero order propagator, D, obtai-
ned by letting H4a—>0 in Egs. (21) and (22).

The standard result for D(Abrikosov, 1965) is
sy — ’ 20
Dé([ﬁlf, ! y,',tw.)— —Bu'a,.,. (?;—_-(:7),
where DA(lp, 'y’ iwy) is the Fourier transform.
of the imaginary time propagator introduced in
Eq. (21) with the defining relation
DA(lur, U'p/ 2" )=B12_ e 1*ns-tD
Wepen
DA, Up' s wn). =ooeee (25)
Here 8=(KgT) ! and Kp is Boltzmann's con-
stant.
Straight forward application of Wick’'s theorem:
to the propagator defined in Eq. (21) leads ta

the expansion
DAy, 'y’ ion)=D80u, Vp'; iwy)

L —cuw

2maca 41y
Ca(l) )P, (L")
XD, hpyiion)

DA Vi’ i we)
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‘tr— I I
Cmawa) i1 iy
AE Bamy

CalIC AU )C AUIC AL
X q),,,,'(lll.') q)ruz'(lzlz') X DoA(lﬂ, ey {we)
DE 1), baptritewon)
XDAUY 12 U’ ;T wn) . correeereneerinnns (26)

Further progress requires some method of de-
aling with the random configuration of A ions.
We express our ignorance of the actual configu-
ration by replacing the occupation numbers C (i)
with the average concentration X, Of course
[Ca(DI=X, also. This is the Virtual Crystal
Approximation (VCA), and we expect its appli-
cation to well describe collective features such
as long wavelength coupled oscillations when the
wavelength is much greater than the average im-
purity spacing. Thus the random system is
approximated by a periodic one and it is possible
to treat the spatial Fourier transform propagator
defined by

DA, Vi siwn) = £ e BT-TDf (K, i),
k
lattice sites per

where N is the number of

unit volume.
We also define

B, UY=Lk S D (BRI, o (28)
i
Then since
1 ,
=3 ek J_»
U= ;

Eq. (26) becomes
1

MmAwa

D;‘fﬂ/(;, 1‘(0!): DO({Q)H) aﬁﬁ’ +

Xa®,," (B DA wa)]?

1 - -
Craway XA % PO (B
(DR wn B4 rerreeeerieneeeenanns ©9

But we note that (ID,.,.’(I;) is just rel ted to the
dynamical matrix D(E) by
D (B)Y=m oD, (B, coreveevenvinieiranienas (30)

and in the long wavelength limit, which will
be our concern when the effects of the electron
gas are considered, one finds through making use
of the Ewald transformation(Born, 1954)

Dus’(B) =m=(—";(’§—"—% dur') +OCK).

Here Qu=[47Ne?/ex mal* is the ion plasma
frequency. We limit Eq. (29) to the case that
#'=p. Then we heve simply

DA E, ] )= Ary —_1—
ia(k, {wa)=Df{(fwn) (1 T

Xa Pux(EODE (Fwon)) 1. o (32)
Thus bY Egs. (30) and (31) and analytically con
tinuing fwa t0 @, we find in the long wavelength
limit,
DA (k—0, 0)=2wa/lwl—w?s
~XaQu(K /K= )], ovee (33)

so that the coupled mode frequencies, given by
the poles of the Green's function, are shifted by
the last term in the denominator. Now when K
is parallel to the ion displacements we have

D2 (w)=2wa/ [&)z—wAz——ZS—XA Q42],

and when K is perpendicular to the ion displa-

cements the propagator becomes
D‘f’(w)=2wA/[w2—wAz+—é—XAQA2].

Thus we have shown that the triply degenerate
local modes are split by their mutual interactions
into a nondegenerate upshifted longitudinal mode
and a doubly degenerate downshifted transverse
mode:

w42+—§—XAQ,42, K] ion displacements
0= T e, (33)

,‘MZ_%XAQA{ K1 ion displacements.

These results have been obtained previously
(Maradudin, 1969) in a different context using
the techniques of lattice dynamics. We emphésize
that Eqs. (33)-(35) depend on the long wayelength
approximation of Eq.(31), but Eq. (32) is exact
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within the VCA.
The above results will be important in treating
the more complex systems of (ii) and (iii), and

we will find it convenient to proceed with the

aid of Feynman diagrams which we now introduce.

If the diagrams of Figure (1.a) are utilized, the
expansion of Egs. (26) or (29) can be expressed
as shown in Figure (1.b), and the solution given
in Eq.(32) is equivalent to the Dyson equation
shown in Figure (1.c).

(ii) We now turn to a consideration of the two

ion system defined by
H=Hs+Haa+ Hp+Hpp+Hap. oo (36)

One may proceed exactly as in (i) and again
calculate the resonant modes of this system by
.obtaining the same Green's function defined in
Eq.(21). For later notational clarity we now
denote this propagator with a double superscript,

DAA. The propagator DBB has an analogous form:
DEB(Tur, I'p's)=—(T [9f (I7)
R I(T' 2 ID, woee &)
~where
OB (D) =bpa + bia.
It is straightforward to expand D44 in terms

of DA given by Figure(l.c), a similar propagator

DB and the interaction term Hap. The results of

such an expansion are summarized in Figure (2).

As is clear from the structure of Hap which is
linear in @f (1) and oF (I'), corrections to D44

must contain only even powers of the interaction
potential, and in fact all possible terms are
accounted for by the Dyson equation of Figure
(2.¢). The solution of the Dyson equation yields

the following analytic expression

DA (K, w)= DA (% @)

L XaXp®3e(R)DACK, DR, @) ) s
{ [2mawa*2mpwp] }

An analogous propagator DBB can be obtained
directly from Eq. (38) by the interchange of
subscripts A- and B. Of course the denominators
are symmetric under this interchange, reflecting
the fact that the motions of the two ion species
are coupled to each other,

Although we can obtain the resonant frequencies
we seek from the propagator given in Eq.(38),
For future reference we also list a new mixed
ion propagator that has no zero order term. It
is

DAR(lpr, I'p't")=—(T. [p2 (1)
PR (2D, eeneeee (39

and expansion of this expression in an identical
fashion as employed for DA4 yields the result

shown in Figure (2.d). The corresponding analy-
tic term is thus

DAB(E, )= XaX5Dua( k) DA(E, 0)DE(E, )
/12 mawa-2 mpowpl*
X { 1= XaX g®2(R) DiuCh. )
DB &)/2 mawa-2mpas) }

This mixed ion propagator will be seen to play
a role in the alloy-electron gas system.

As in the single ion type case, one obtains
characteristic longitudinal and transverse modes
in this alloy system by finding the poles of any
of the propagators D44,DBB or DAB  Again in
the long wavelength limit, we may use Eq. (31)
to obtain from Eq. (38) or (40) the f{following
resouant frequencies

w;2=—%(w‘;2+ wfz)‘_t—;— [(w‘,"—w,m)z
+19§XAXBQi Q%]* ............ (41.a)
and

mf2=%(wz¢_4+ wfa)i—;‘ [(w;—m;)z

+%XAXB_Q&Q§]“‘ ............ (41.b)

Here we have defined w‘,‘zz—w§,+%XAﬂ', 032
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Ew%-}-g}(’gﬂz , 0= wi—lXA Q% and w¥=w?

3 3
1 2
_g'XB ‘Q'B'
The B ion plasma frequency is Qp=[4 aNe*?/
€smp)%. It should be noted that the sum rule
for the single jon species system breaks down in

the alloy system, and one finds from Eq.(41.a)
and(41. b)

(0} 0,2 (0! 0i) =0 XsQh+05Xa05 .

These results are displayed schematically in
Figure (3), where the resonant freq uencies of
Eq. (41) are plotted as functions of the A ion
concentration. The dashed diagonal lines show the
modes that would result if each ion species in-
teracted only with othes ions of its own type,

ie 0wl of wfand of.

The two longitudinal
modes are seen to mutually “repe” each other as
do the two transverse modes,

When numbers appropriate to GaAs,.:P, (see
‘Table 1) are inserted into Eq. (41), one finds the
effect of Hup to be small: The difference be-

tween ) and w4 (here the Aions are phosphorus

jons), with X4=0.5 is found to be about lcm %
Tt may be that other alloy systems show a stro
ger coupling; we have yet to explore this possi-
bility. It is obvious, however, that enha inced
coupling will result if the localized frequencies
of the respective isolated ion types are not greatly
different. Further, anticipating the results of
subsection(iii), we note that enhanced coupling
can be expected if there is a means of “pushing
the resonant frequencies closer together. There
is such a method, and that is to introduce the
electron gas, the subject to whic we now turn.
(iii) In treating the fully interacting alloy-
electron gas system it is possible to obtain the
resonant frequencies by again calculating the
Green's function defined in Eq.(21) as we have
done in the two preceedinasections. However it

is more convenient, and the resulting expression

more symmetric, to instead introduce the electron

density fluctuation propagator, It is given by
X(X7, X'7")= — (T [8a(X7)8,(X'7" )]

Here 8,(X7)=eH" §ucx:e#", with H the full
Hamiltonian given in Eqe. (2), (3) and (9), and
8x¢x> is the density fluctuation propagator

Sn(X)=4*(X )X ) -4 (X X)), --(44)

It is well known that the propagator X provi-
des a description of the interacting electron gas
(Fetter, 1971).
density is sufficiently high, the use of the Ran-

in particular, if the electron

dom Phase Approximation (RPA) is justified, and
the density fluctuation propegator has a parti-
cularly simple form. If the ion-electron interac-
tions are temporarily ignored so that only Hgg
contributes to the expansion of X, one has the
seriest shown in Figure(4). Here X is represented
by the “hatched” electron-hole bubble, X, is a
bare electron-hole bubble, and each power of
Hgg contributes a dashed interaction line.

We note that if the Fourier transform of X is
defined by

X(Xr, X'T’)ziléz Eeu'c.d’»,?n

e iomt-tOX(E  fwm), -(45)
the zero order term X<(I;, {wn) is expressed in
terms of the free electron propagator G(k fws)

as
Xo(@ )= % 3 2 GChiwn)
& ™

GCh+Q,iwn+iQu). - (46)
The factor of two in Eq. (46) accounts for the
electron spin.

The free electron propagator itself is defined by
G(Xr, X'1")= —(T.[4(XT (X7,

and its Fourier transform of course has its
poles at the allowed energies of the conduction
band:
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GK fwp)=[fws—(K2/2m*)—p)] "
..... RO C 1))

Here p the chemical potential of the electron
gas.

The essonce of the RFA is to allow all contri-
butions to X resulting from bubbles with intermal
structure to be neglected. (It is curious to note
that the condition for the validity of the RPA is
not satisfied for the polar semiconductors we
consider here with typical electron concentrations
~10®cm-3 or less. The condition is simply r,
2 1, where r, is adimensionless measure of the
electron density of the system : r;=ro/as, where
n,=04nre*/3)"! and @, s the Bohr radius. For
semiconductors doped so that e, is on the order
of the optical vibration frequencies of the lattice,
rs is typically 0.2 or so. our approach is to use
the RPA simply because the electron plasma is
known to exist in the systems we treat in this
paper, and, inPeed, its properties are quantitati-
vely well described by the RPA. The analytic
expression corresponding to Figure (4) is simply

X(k @) =Xo(k @)/[1- VKXo E, 0)].

The z3ro order term X, is calculated exactly
in the zero temperature limit while for finite
temperatures only its imaginary part is expressible
in an exact analytic form(Sirko, 1978).

It is possible, however, to reprasent the real
part of Xy as an approximation to the zero tem-
perature limit with only very minor quantitative
error as long as the temperature is less than the
Fermi temperature of the electron gas. The real
part of Xo at absolute zero is given by the Lind-
hard function(Lindhard, 1954),

description of dispersionas well as the breakup

and a realistic

of the electron plasma requires the use of Lind-
herd’s formula in Eq.(49). Hovever in this paper
we will present only the longwavelength limit for
which simple analytic eXpressions are obtainable.

In section IIT we discuss theeffects one expects

from a consideration of finite wave vector exci-
tations, a topic we are now investigating quanti-
tatively through numerical analysis.

When K—0, X¢(K, ) has a very simple form
(Fetter, 1971):
”n K2
*

m¥* 2

Xo(K—0, w)=

ST (50)

so that the long waveleagth limi of X from Eq.
(49) is seen to be

X(K-0, 0)=(n/m*)K2/[ 02— w?s]. ---(51)

Thus it is clear that in the long wavelength
limit X itself canbe thought of as a plasma propa-

gator with its singularity at the collective
resonant frequency of the electron gas.

To this point we have considered the ions and
their mutual interactions, and we have introduced
the electron density fluctuation propagator as a
means of characterizing the interacting electron
gas. We now show that it is a straightforward
matter to combine the electrons and ions. Fosr
this pudpose it is helpful to note that the electron-
ion interaction terms, Hag and Hpg, give rise to
effective electron-electron interactions. This is
obvious when one compares Figures (5.a) and
(5.b). In Figure (5.a" the electron-electron in-
teraction via Heg is saown, while an analogous
scattering involving H24p can be seen to occur as
in Figure(5.b). Itis clear that within an RPA the
exact density fluctuation propagator must contain
terms as shown in Figure (5.c¢), which displeys
all RPA corrections to Xp that involvea single
electron-electron scattering as well as a repre-
sentative higher order term. Now, X, defined in
Eq. (43) and includingion effects is drawn as a
crosshatched bubble.

It it Important to note that since the electron
plasma oscillations are longitudinal, it is the
longitudinal ion vibrations which couple to the
electron gas. This result of course is guarnnteed

by the dependence of Has on the component of

g in the direction of ion displacement in Eq. (16).
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Again within the RPA one finds that a Wick’s
theorem expansion of X can be expressed concisely
‘as in rigure(5.d). this is a key result, and the

corresponding analytic expression is

X, w)=Xp(k, o) [ 1-Xelkew)

[ NXavs DFACR )
+NX572 DEECE, )
+2 Nv475 D%k o) ] } 52

Here we have denoted the electron density
fluctuation propagaton that results when only
Hep contributes to electron scattering as Xp. It
is given by Eq.(49). The actual proceedure used
in obtaining Eq. (52) was to calculate directly
the first order corrections to X by a Wick’s
theorem expansion and thus obtain the correct

above. The diagrammatic

coupling constants
analysis of Fitgurs(5) hen permits direct gene-
ralization to the infinite order expansion given
above. We emphasize that in its present form
Eq.(52) is correct for all k. Thus, realistic
computation of dispersion depends only on re-
presenting Xo(;,w) accurately. As noted previ-
ously the dispersion due to P(K) is negligible
for the entire region in which the electron gas

exhibits plasma like behavior.

Again specializing to the long wavelength limit
we take the K—0 valuesof Xo and ¢ given by
Eqgs. (31) and (50), substitute into Egs. (38), (40)
and (49) and use these expressions in Eq.(52).
Then after some rearrangement one finds that
the poles of X occur at the frequencies which

satisfy
wG—w‘(w$2+w‘;2+w2,)+w2[ ,(m;2+m32)
+of ol —aXa Xo 0 Q;,]
—o (w WP — XAXB Q0

Using parameters appropriate to n-G4Ags,.x Py

as displayed in Table 1, we graph in Figure (6)
the variation of the resonant mode frequencies
as a function of P ion concentration for a parti-
The dashed lines
represent the modes that would result if the P

cular electron conceUtration.

and Ag ions interacted only with members of
their own species. As was anticipated in (ii) one
sees clearly that the modes are strongly mixed
over nearly the entire range 0<X<1.

Our work has assumed that the two ion species
A and B are isoelectronic, while for a real
crystal this assumption must be slightly relexed.
In obtaining the numerical results we have treated
€ as a varying parameter with limiting values
appropriate to Ga Asat X=1 and to G,P at X=1.
Then the values of w',:z and mfz in Eq.(53) are

found from
:—é‘ (Q)i‘i‘z w;v)"‘X(mi—m;.). ......

where o, and wr are given in Table 1 and X is
either X4 or Xp.

In Figure (7) is shown the frequency variation
of the three resonant modes as a function of
electron concentration for a particular alloy com-
position. The slight requlsion due to the mutual
A-B ion interactions when n,=0 as derived in
(ii).

Again, there is a fairly broad region in n,
over which vigorous mixing of all three modes
Additionally,
high electron density limit the

is present,. onenotes that in the

“ion like” modes
approach not the longitudinal optical frequencies
but the transverse optical frequencies. This is
simply a consequence of the screening of the
individual ion sites of the high density electron
gas thus effectively blocking the ion-ion interac-
tions that would otherwise upshift the frequencies
to the longitudinal values.

In addition to the three strongly interacting
longitudinal modes described here, the transverse

ion modes, calculated in (ii), are uneffected by
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the electron gas.
1. DIELECTRIC CONSTANT

For some applications such as calculating
-absorptivity it may be useful to have an expres-
sion for the dielectric constant of the alloy-
electron gas system. The dielectric constant may
‘be most easily obtained from the expression

Vers(R, @)=Vd(K)/e(R, @), oo (54
where VJ(K) is the bare Coulomb potential,

VI (K)=4ner/K2, (K, ) is the dielectric con-
stant and V,;(K, ») is the effective electron-
electron interaction potential. Figure (8) outlines
the diagrammastic development of the effective
potential.

In Figure (8.a) the effective potential is ex-
panded in terms of the simple scattering processes
we have already described. Then with the
definition of V%, (K@) in Figure (8.b), we
obtain the RPA approximation of the effective

potential as shown in Figure (8.c). By definition

Vess(R, @)=L+ NXa 7% DAA(R, w)/K?

+ NXp 7% DBB(K, ) /K2
+2NvY478D48(R, ) /K2,

where we use the same coefficients found in the
expansion of X in section II. Thus by the Dyson

equation of Figure (8.¢) we have

VB, @)=V (K o)/[1-Vy (K, o)

KoK, @)], woevererenseonins (56)
and by Eq.(54),

ngf(K, @)
VI(K)
Xo(R, ) } ’ l_ ............... (57)

[e(R, )] 1= {1-vesk )

. CONCLUDING REMARKS

We have developed the formalism describing

the nature of coupling in a polar semiconductor
binary alloy-electron gas system, and have
carried out numerical calculations for a repre-
sentative real crystal in the long wavelength
limit. We have seen that jhe mixing of the
elementary excitations is signifigant over a broad

range of ion and electron concentrations.

Although the effects of dispersion have not
been numerically calculated, the general forma-
lism contains the wave vector dependency, and
interesting effects can be expected by probing
finite wavelength excitations. Qualitatively it is
clear that as the wave vector is increased from
zero the coupled mode frequencies will shift due
to the strong dependence of the electron plasma
on t.he wave vector, Then as the wave vector
increases signifigantly beyond the Debye inverse
screening length the three strongly coupled
modes we have described should rapidly change:
the plasma like mode must decay into the single
particle excitations of the Landau damping
region, and the other two modes must shift back
to the nearly uncoupled modes described in sec-
tion IT (ii).

requires numerical computations which we expect

Detailed analysis of these shifts

to carry out. Raman scattering should provide an
excellent means of probing the effects we have
have quantitatively described in section II and
qualitatively described in this section. In addition,
selection of particular geometries should allow
both the longitudinal strongly coupled modes and
the transverse weakly coupled modes to be studied
in turn with the same specimen. A future paper
will treat the wave vector dependent effects and
apply the formalism developed here to the Raman
scattering problem.
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(TABLE 1)
oL wr wo* Qo
GaP 403* 367 379 166

GaAs 292* 269* 277 144(cm™1)
*wo(GaP)=wa; wo(GaAs)=wsa
+0o(GaP)=04; No(GaAs)=Qs

#see reference (14)

FIGURE CAPTIONS

Figure 1. (a) The Feynman diagrams of (i)
are built from the elements defined here. (b)
The expansion of the exact Green's function in
terms of the zero order Green’s function and the
interionic potential. (c¢) Dyson’s equation from
which an expression for the exact propagator is

obtained.

Figure 2. (a) Propagators used in a B ion sys-
tem. (b) The B ion displacement propagator
Dyson equation. (c) The expansion of D44 in an
A-B ion alloy including all possible interionic
interactions. (d) The Dyson equation for the

mixed jon propagator DAB.

Figure 3. The resonant modes wi and i asa
function of A ion concentration. The dashed lines
represent the values appropriate when H43—0 so
that each ion type interacts only with members
of its own species., The values wzra(wrs) and

wralwrs) are the longitudinal and transverse

optical frequencies of the pure A (B) ion lattice.

For the interacting alloy system the longitudinal
modes are seen to mutually repelleach other as
do the transverse modes.

Figure 4. The RPA expansion of the electron
density fluctuation propagator. All terms con-
taining electron-hole bubbles with internal struc-

ture are neglected. Ion effects are not included
here. The shaded bubble is the exact Green’s
function, X, when only electron-electron effects
are present. The bare bubbles are the zero
order approximation, x, and the dashed lines

are the Coulomb potential terms.

Figure 5. (a) Electron-electron scattering pro-
cess arising from the Coulomb interaction Hgg. (b)
An equivalent electron-electron scattering process
involving a second order local mode process(crea-
tion and destruction of a local mode excitation).
(c) The first few terms in the expansion of X
involving both electron and ion effects. (d) The
Dyson equation for X in terms of the plasma
propagator defined in Eq. (49) (the shaded el-
ectron-hole bubble on the right hand side), and

the interionic propagators derived in (ii).

Figure 6. The coulped longitudinal modes in
n-GaAs,-xPx as a function of x. The dashed
lines indicate the modes that would result without
ion-electron and A-B ion coupling. Here parame-
ters given in Table 1 were used along with an
electron concentration such that wp=385cm!.
(This corresponds to 7, =1.15x10% cm-3 jn

GaAs. )

Figure 7. The coupled longitudinal modes in
n-GaAso.5 Po.s as a function of n,. Here the fre-
quencies are calculated in terins of wy given in
Table 1 for GaP.

Figure 8. (a) The first few terms of an expan-
sion of the effective electron-electron scattering
potential. (b) The definition of an “effective
zero order scattering potential.” (c¢) An expansion
of the effective potential in terms of the potential
defined in (b).
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