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EIT Reconstruction of A Two-Dimensional Flow Field Using
Regularized Newton-Raphson Method
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ABSTRACT

The regularized Newton-Raphson method(RNRM) has been used to reconstruct by electrical impedance
tomography (EIT) a two-dimensional flow field containing some artificial objects. Three different cases of

object size. number and position were investigated. Instead of using measured voltage data at boundary
electrodes. computed data were used. It is found that the reconstruction method employed is working well for
the three cases. Though some blurring is found along the contour of the objects. the overall shape of the
objects can be well reconstructed. The position of the objects was also accurately predicted. Also investigated is
the effect of the regularization parameter. Our study shows the use of smaller regularization parameter results

in better reconstruction.
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I, INTRODUCTION

The EIT (Electrical Impedance Tomography)
technology has become a potential tool for
reconstructing the phase distribution of a two-phase
flow field. The major advantage of an EIT system
js that its temporal resolution is higher than other
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tomographic measuring techniques such as X-ray CT
{computer tomography) or ultrasonic tomography.
Time resolutions more than 50 frames per second
can be achieved. In an EIT system. a number of
electrodes are mounted on the periphery of the flow
field which contain an electrically conducting
medium such as ordinary water. A prescribed electric
current is injected into one electrode. known as the
source electrode. and withdrawn at another electrode
or sink electrode which is usually grounded. The
resulting electric voltages are then measured at all
of the electrodes with respect to the ground. The
measured voltages are dependent on the conductivity
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(or resistivity) distribution of the flow field. For a
bubbly two-phase flow mixed with water and air.
for instance. the conductivity difference between
water and air is very large. so that it is possible to
infer the phase distribution from the measured
voltages on the boundary electrodes.

The reconstruction problem basically includes
forward and inverse solution steps. In the forward
solution step. the electric potential distribution inside
the flow domain and on the periphery is computed
based on an assumed conductivity distribution.
Though  nonlinear, the forward problem is
well-conditioned, and there exists a unique solution.
Efficient methods, for instance the FEM(finite
element method), are available to convert the
forward problem into a system of linear algebraic
equations. One can either write his own FEM
program or use a commercial tool such as
MATLAB to solve the forward problem.

In the inverse solution step, the interior
conductivity distribution is reconstructed from the
measured voltages on the boundary. The inverse
problem is ill-conditioned in nature and hence there
does not generally exists a unique solution
corresponding to a boundary voltage distribution.
Approaches for solving the inverse problem can be
categorized as direct and iterative methods. Direct
analytical solution methods are subject to
simplifying assumptions and their usage in the case
of two phase flow fields is of very little practical
interest. In iterative approaches, a candidate
conductivity distribution is first assumed. A set of
boundary voltage values are then calculated from
the candidate distribution by solving the forward
problem. The calculated voltages are compared to
voltages measured on the boundary during current
injection. and the reconstruction error is represented
in the form of their squared difference. The
candidate conductivity distribution is then modified
based on the error. The forward problem is again

solved based on the modified conductivity
distribution. and new reconstruction error is
evaluated. This process is continued until some error
criterion is satisfied.

Various  reconstruction methods have been
developed and applied to reconstructing the phase
distribution of multiphase flows. Methods of more
frequent application include the back projection
method”, the Newton's one-step error reconstruction
(NOSER)  method”. Newton-Raphson  method
(RNM)”. A comprehensive description of these
methods can be found in references”. These methods
are basically the same in the sense they generally
follow the procedures described in the last
paragraph. They differ in the way the current
conductivity distribution is updated to obtain a new
distribution.

Yorkey et al” developed a modified version of
Newton-Raphson method. also known as the YWT
method. and much reconstruction work has been
done with this method. It is reported that the
modified Newton-Raphson method has produced
more accurate results than any other method listed
above when there exists no noise. However. its
performance worsens when measurement noise is
present. It produces noisy images when the number
of elements are large for good spatial resolution. In
order to compensate these drawbacks. Hua et al®
introduced including a regularization term in the
reconstruction error. Several methods of the
regularization have been suggested.

We have implemented the Newton-Raphson
algorithm regularized by the subspace regularization
method suggested by Vauhkonen”. In this paper. we
present reconstructed images of a circular flow field
which is assumed to contain artificial object of
different conductivity. Also presented are the effect
of the regularization parameter on the reconstructed
images and the transient behavior of the relative
root mean square error of the reconstruction.
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It. FORWARD PROBLEM

In a conducting medium where no charge sources
or sinks are present. the governing equation for the
electric field can be derived from Maxwell's equation

as
v gve=0 )]

where o is the conductivity distribution of the
medium and ¢ is the electric potential. For an EIT
system with finite number of discrete electrodes
mounted on the periphery of the flow field. the
boundary conditions are given by

n- aV¢={ ) 322(225 (2)
where » is the outward unit normal vector on the
bounding surface, and ¢ is the current density at
the boundary. 2 and Q4 denote the surface of
the excitation electrodes and the rest of the
boundary surface. respectively.

For FEM modeling of eq. (1). the flow domain is
divided into a finite number of elements. Since our
problem is two dimensional. we use triangular
elements. It is assumed that the conductivity
distribution is constant in each element. and the
potential distribution in an element can be
represented by a simple interpolation formula:

$(x.3) =29, fx.5) 3

where ¢, are the potentials at nodes{vertices) of
the triangular element. fi(x,y) is a dimensionless
interpolation function which has the value 1 at the
i-th node and O at other two nodes. Given the
boundary conditions and with the treatment of eq.
(3). Eq. (1) can be converted into a system of
algebraic equations of the form’:

Ab=f (4)

where A is the admittance matrix of dimension

(N+L-Dx(N+L-1) with N and L being the
number of internal nodes and the number of
electrodes. respectively. b and f are the vectors of
the electrical potential( ¢) and current density().

respectively.
b=(4y, b2, ... 0N (5
f=(i1,i2,...l.N+L—1)T )]

Elements of the vector f become zero except at
source and sink electrodes.

Thus. given the conductivity distribution and
boundary conditions. eq. (1) can be uniquely solved.
and the solution provides the voltage values at all
nodes including the boundary electrodes. We use the
MATLAB to solve the forward problem.

. INVERSE PROBLEM

The goal of the inverse solution step is to seek
a resistivity (or conductivity) distribution which
minimizes the difference between measured and
computed voltages at the boundary electrodes. In
order to do this. the resistivity distribution used in
the forward solution step is continuously updated
based on the voltage difference. The Newton-
Raphson method(RNM) takes the objective function
as

o)=L V() - NI Ve - U] M

where V(o) and U are vectors of the computed
and measured voltages. respectively. at the boundary
electrodes. o is the resistivity distribution of the
flow medium defined by o=o0""' The vectors Vo)
and U are defined as
V=[v{,v§,...,v¥,v§,....vj,...]T

(8)
i=12,..,& i=12,....,P
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=L2,..,& i=12,..., P

where

v; = computed voltage at the jth electrode for
the j-th injected current

u; = measured voltage at the jth electrode for
the i-th injected current

@ = the number of electrodes

P = the number of injected current patterns

Minimization of the objective function requires:

)=V (I V(p)— Ul=0 10

where the first derivative term V'(o) is called the
Jacobian matrix and defined as

N1 7
i=12,..., QxP. j=1.2..., M (1n

where o, is the conductivity of the jth element

and M is the number of mesh elements used.
The Taylor's series expansion of @ (p) at

o** = p*+ dp* is approximated by

O (" =0 (p")+ 0 (pM 0" =0 (12)

The second derivative term @ ’is called the Hessian

matrix and can be approximated as

Hyeu=0 (0= V' (eDTV(H=7T 13

where we have neglected the second derivative of

WH. Rearranging eq. (12) gives

k+1

ot =p*" N —pt=—H YT [V(eH-U1  (14)

During minimizing of the objective function by the
RNM. high ill-conditioning occurs due to a very
high condition number of the Hessian matrix. which
is defined as the ratio of the maximum eigenvalue

to the minimum. Usual approach to overcome this
problem is to include a regularization term in the
objective function. We use the regularized Newton-
Raphson method(RNRM) where the objective
function is given by

¥(0) =1 (V0= T V(p) - Ul (15)
+%a(Lp) (Le)

where @ and L are the regularization parameter and
the regularization matrix. respectively. By following
the same procedure as used above. we can get

=—(H+aL"L) "I VpH -1 (16)
+al TLp%

Various methods of specifying the regularization
matrix are available. For instance. the algorithm®
developed by Rensselaer Polytechnic Institute uses

L7L=diag(J")). We use the subspace regulari-
zation method the detail of which is given in
reference”’.

The majority of the computational effort using the
RNM is involved with the calculation of the
Jacobian matrix. and subsequently the Hessian.
From eqs (4) and (11). the derivative of the
potential distribution with respect to the resistivity
of the n-th element can be obtained by

ab _ dA”'H an
.  do,

where p, is the resistivity of the n-th element. The

right hand side of eq. (17) can be expanded as

-1
HATD _ g1 9A g-1p 4104,
90, a0, oo,
(18)

The derivative of the admittance matrix is can be

calculated as
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. NUMERICAL EXPERIMENTS
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Fig. 5(c). Root mean square error of the case 3
reconstruction.

when a=0.0005. The images shown in Figs. 4 were
obtained with @=0000005. It is found that the
reconstruction method we have used works fine for
the 3 cases. Although some blurring is found along
the boundary of the objects. one can generally
identify the contour of the objects. The positions of

the objects and reconstructed images well match.

As for the effect of the regularization parameter,
it is evident that the use of the smaller # results in
better reconstruction. The effect is better shown in
Figs. 5 (a). (b). (c), where the RMSE's are
compared for both @ values. With a=0.000005 the
RMSE's for the 3 cases sharply drop and become
stable with 20 current patterns. With a=0.0005,
however. the RMSE's oscillate even after a large
number of current patterns are used.

V. CONCLUSION

The regularized Newton-Raphson method has
been used to reconstruct a two-dimensional flow
field with some artificial objects. Three different
cases of object number, size and position were
investigated by numerical experiments. Instead of
using actually measured voltage data at electrodes.
computed voltage data were used. The data were
obtained by solving the governing equation with
MATLAB. It is found that the reconstruction
method employed works fine for the 3 cases.
Although some blurring is found along the
boundary of the objects. the shape of the objects
can be well identified. The positional accuracy is
also very good. As for the effect of the
regularization parameter. the use of the smaller
regularization  parameter results in  better
reconstruction. It is found proper choice of the
regularization parameter is important to reduce
computational efforts as well as experimental
work.

Further research is needed to improve the spatial
resolution of the reconstructed image. especially
when more than two objects are close to each other.
Also needed is further investigation of the effect of
the regularization parameter and regularization
matrix.
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