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Robust H, State Feedback Controller Design of
LPD System with the Time Varying State Delay
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Abstract

In this paper. we considered the LPD system with the time varying state delay.
Quadratic stability and » -performance conditions are derived in terms of linear
matrix inequalities(LMI's). The well known H. state feedback controller synthesis
problem for state delayed LPD system is solved and the equation of computing the
feedback gain are presented. The closed loop quadratic stability and y -performance
conditions are derived and the equivalent stability and y -performance conditions are
characterized by linear matrix inequalities(LMI's). Some comments on the
computational complexity of LPD system are mentioned.
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. (LPD) system with state delay whose
[. Introduction ] )
entries of state space representation

depends on the piecewise continuous

In this paper we considered a finite . .
time varying parameter vector.

dimensional linear parameter dependent . .
© p P Control of LPD system is mainly treated
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in the gain scheduling methodology. For
this method, the robust stability and
robust performance condition is derived by
Shamma’. By B.G. Scott?. the quadratic
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stability and y-performance condition is
derived in the forms of LMI and controller
synthesis is considered. W. Fen” present
the LQG and L, design of same type of
system.

Time delayed systems are treated by
some authors and useful results are
reported.'"™™ J.H. Lee. et al'' treats
stable delay

system and suggest

memoryless H. controller. J.S. Lou. et
al” is studied delay dependent robust
stability and M.S. Mahmoold and N.F.
Al-Muthari®
robust controller for delayed system.

present the design of

Most of the mechanical system and
the chemical reactor may contains time
delay and the dynamic equations of
which are depend on the time-varying
parameter vector.

In this paper, state delayed LPD system
is considered. The parameter vector is
assumed to be piecewise continuous and
real-time measurable. In section II, the
parameter variation set, plant dynamics

and general statements on H. controller

design are reviewed. The quadratic
stability and y -performance problem is
analysed in section I1I. In section IV. the
state feedback design is treated, the
closed-loop stability and 7y -performance
conditions are characterized in terms on
LMI and some comments on computational
complexity of LMI's of the LPD system

design are mentioned.

[l. Dynamics and H. design probiems
of state delayed LPD system
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In this section, dynamics of the state
delayed LPD systems are considered and
general H. design problem is reviewed.
In order to describe the state delayed
system. we firstly define the parameter

variation set.

2.1. Parameter variation set
Most of the

chemical reactor and physical stems can

mechanical system,
be modelled by LPD system whose
dynamics are depend on the time
varying parameter vectors and in which
the time delay terms are included many
of the case. On the parameter variation
set, it is assumed that we have real
time information about a vector valued
parameter whose value 1is associated
with the dynamics of the plant in some
known way. The following definition is
characterize the parameter variation
set.

Definition 2.1.* Given a compact subset
P=R®, the parameter variation set Fp
denotes the set of all piecewise
continuous functions mapping R (time)
into P with a finite number of
discontinuities in any interval. For each
o; and all t, there exist pmn.( >0) and
P Y0) such that  ©mn<loi{t) <o
where @;, 8, is the minimum value and
maximum value of p;.

By the definition 2.1, the controller
which is designed for each p; can be

scheduled and for scheduled controller,
the stability and performance conditions

are pl'eserved.
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2.2. Dynamics of state delayed LPD
system

The dynamic equations of the LPD
system with delayed state is described by

x(t)
z(t)
y(t)

A® Adp) Bi(o) Byo)[ XV
C.(p) Coio) Dilo) Do) [¥(t =D

Co(p) Calp) Dy, (p) Dn(p) ‘:((8

(1)

. n
where pe Fp. X, X, X4€R,, weR™,

n

zeR™ "

ueR™, and yeR"™. Without
loss of generality, it is assumed that
the following conditions on the dynamic
equations are hold for all peP.

Al) Dp(p(t)) is full column rank.
A2) Dy(p(t)) is full row rank.

A3) Dp=0.
A4) Dp=10, 1,]" and Dy =[0, I,].

By norm preserving coordinate transform,
the generality of assumption A4) s
preserved”. For notational purpose, we do
not notate parameter value p in dynamic
equations and matrix equations. Thus all
variables and elements of matrices in this
paper are parameter dependent value or
matrix. Let us define the delayed state

vector as x5(t): =x(t—d(t)). By these

assumption, the dynamic equation is

x(1) A A, B, By B, ;;((tt))
z{Wi_ |Cu Cua Dt Due 0 wy(t)
z,(t) Cp; Ciza Dyt Duz I, wo(t)

Y(t) C2 CZd 0 I“'Z 0 U(t)
(2)

F(P)

Fig. 1 The closed loop structure

The equation (2) is wused for the
analysis of the closed loop stability and
performance in section 4.

2.3. H. Design Problem

The closed loop structure of general
H. design is shown in Fig.1. Then the
design problem is “Find a state feedback
controller F(P) such that for all

p(t)eFp ( for all t), Stabilizes 2Xp and
Minimize || Tl « .© For LTI system?’,
this H. problem is equivalent to the
L, problem, i.e., minimization of
ITwle is

minimization of | T, ! 2. In this paper,

equivalent to the

the controller is designed for each p;.
This means that the L, design is

equivalent to H. design.

lIl. Stability and performance of state
delayed LPD system.

In this section, we characterize the
stability and r-performance of the state
delayed LPD system in terms of LMIs.

3.1. Open loop stability and y performance
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The well known Lyapunov method is
stability
following lemma states the stability of
the state delayed LPD system.

Lemma 3.1: Given state delayed LPD

used for analysis,. The

system ZXp. if there exists P=PTy(

and S=S7>0 such that

A'P+PA PA,
'« ¢ (3)
AP —(1—d(1)S

then the given system is quadratically
stable over Fp.
proof) Let wus select a Lyapunov

functional V{(x, x,) as

V(x, xg)= x"(t)Px(t)+ f:, dx'r(r)Sx(r)dr
(4)

Taking the time derivative, we can
obtain

SV, x(t—d )=

X" (O)Px(tH xT(OPx(t) + xT (£)Sx (1)

—(1=d.(t) xi' (©)S xi(t)
(5)

For stability analysis. we assume the
zero input. By substitute of equation(1)
into equation(5) and some algebraic

manipulation, equation(5) is

Vix, xg=[xT x]]-

ATP+TPA+S PA,
AqP -(1-4d.s

[X] (6)
X4
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Thus V(x, x4)<0 if and only if there
exists P(=P'>0) and S(=S">0) such

that

T
[AP+PA+S PA, }< 7

AP —(1-dJS
if time delay is not function of time.
then equation(7) is abbreviated by

T
[A P+PA+S PAd]<O (8)

Alp -S

The equation(7) and (8) characterize the
open loop stability for the given system.
The following lemma characterize the v
-performance condition.

Lemma 3.2° Given P . 0 and state
delayed LPD system, the quadratic ¥
-performance problem is solvable if there

exist P=P'>0 and S=S">0 such that

ATP+PA+S PA, PB C/

AlpP -(1-dJ)S 0 Cy

B! o —71D,C

Cl Cld D]l _I
(9)

proof) Let us select the performance

measure J as

1= [ 270 20— AwTOwOde (10)
Now, we assume the zero initial

conditions and for non Zero
w(t)eL,[0, o). the following is hold

1= [TT270 20— AwOwer V()

B R AIREEEE SR Sy

T

hE SR

e iy n
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—V(o0) (11)

since V(0)=0. thus

I< [ 127 2= AW 0w + V(e
(12)

and substitution and let ¢&=[x, x4, w]¥

then

1< [ £ Qe (13)

where Q is obtained by equation(14)

and which is Schur complement of Q in

equation(15).

ATP+PA+S+C/C,
Q= AlP+ClLC,
BTP+D]C,

PA4+CJCy PB+C1TD“
—(1—-d)S+CLCu CLDy, (14)
DICia - 71+D]Dy,

ATP+PA+S PA; PB, C|

T 3 T

Q: AdP —(l_dr)s 0 C]d
BIP 0o —”ID}

Cl Cld Dll I

(15)

3.2. Closed loop r-performance

Let us denote the controller dynamics

as

xk()] _[Ax B xk(t)

o )= ce o] [V (16)
Let xq(t):= [x"(t) xg()]" then the

closed loop dynamic equation is

18 B e
where

[A+BZDK(pi)C2 BZCK]
- BkC, Ag |

Acdz[Ad-i—B Dxczd]
BxCoq

B.= [Bl+B DKDm]

D

BkDy

C.=[C,+D;;DC, D\ .Ckl.

Cua=[ClatD;;DCyl.
D.=Dy;+D;DkDy

The following lemma states the closed
loop 7-performance.

Lemma 3.2 Given LPD system with
state delay. the
-performance problem is solvable if
m)>0, XER(n+m)X(n+m).

quadratic Y

there exists an
X=X">0,

and bounded

S.=S»0 and a continuous

matrix function

K:RS—R ™™™+ ™ cuch that, for all

pEP
ATX+XA +S XAy XB. CT
ALX ~(1-d)Sy 0 Caa
<10
BIX 0 —71pf
CC Ccld DC -1
(18)
Here, S;; 1is positive definite and
defined as
S= S" ] (19)
0

proof) The same procedure of lemma
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3.1.

IV. State feedback controller design

In this section, the state feedback
problem is considered and the equivalent
conditions of equation(18) is derived. The
computational complexity, occurred in the
design of LPD system, is stated in the

last sub-section.

4.1. Stabilization by state feedback
Consider the following state delayed
LPD system

x(t) A A, B, B, X((t))
z(t)|=| C, C,y D, Dp )\j:(tt) (20)
y(t) I, 0 0 0 ult)

The solvability of quadratic stabilizability
by state feedback is characterized by the
following theorem.

Theorem 4.1. @ The quadratic state
feedback problem for the LPD system with

state delay is solvable if and only if there
exist a continuous function F:R*—R™™"
a matrix Z€R™™, Z=Z"50 and a

scalar >0 such that

AFZ+PA; PA, PB, C}
AlP —(1-AS; 0 Cy <0
B/ 0 - 71 D},
CF C]d Dll _I
(21)
where

A[.:A'f‘BgF C}::C1+D12F
proof) Same procedure with lemme 3.1
and 3.2.
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Theorem 4.2. : The equation(21) in the
theorem 4.1 is equivalent to the
equation(22).

ZA"+AZ+75Z+BIB, A&, B,

A, ~(1-8s 0 _|<0
ET 0 —rl
(22)
where
K:A_BZCI, Kd:Ad_Bgcld,
§1:Bl_Ban

and the stabilizing state feedback gain
is

F=—y %DID) YBIY '+DIC,). (23)

proof) see appendix

4.2. Comments on the computational
complexity

When we considering the LPD system,
the computational problem is occurred.
One way to avoid this problem is that
grid-ing the parameter value, design
controllers for each grid and then
schedule the
algorithm have constraints: one is the

controllers. But this

relationship between the grid interval
and the stability condition, i.e., as grid
interval is increase then computational
complexity is decrease but stability

margin is decrease. This problem may

be weaken by the H. loop shaping

design. The H. loop shaping design

procedure is that selection of input
output weighting functions and then
design a controller for weighted plant.

The design procedure by H. loop
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shaping design is summarized as
follows.
stepl : select the weighting functions
as possible as insensitive with
parameter variation.
step2 @ grid-ing parameter values
step3 : compute the open loop gain for
each grid and grouping the
plants.
step4 @ design controllers for dominant
plants in each group.
step5 ! scheduling the controllers.
By this algorithm, the number of
controller can be reduced and
computational complexity may be

weakened.

V. Conclusion

The H. design of state feedback
controller for state delayed LPD system
is considered. The design problems can
be characterized by LMI's and state
feedback gain is computed. The input
delayed and both input and state
delayed system is to be studied and the
output feedback controller design is also
treated in the near future.

VI, 2 ¢

B =FRdMe Ay Al AIxAL
¥¥ete LPD Al&®lol disld n#3isio.
quadratic 43I E ¥ rAHeEdE H¥8YPE
REA(LMD #HE fx3d. Foja A2
doff dig H. e HHYA Ao ZAe] di
A& AMAGAeH dH HHY o5& 73K

th. HF X quadratic PHEY r-A5x3L
fEdlgdon Slx3AE LMI #u2 73
t}. LPD Al2%] AAcAM Ao RAHS
k0= 3

Appendix

Proof of the theorem 4.1
=) Define R, U and F as

ATP+PA+S  PA, PB, CJ
- AlP -(1-dJ)s 0 cCiI
R= d r < (O
BIP 0 —¥I D
G Cu D, -I
(A1)
Let us select U and F as
PB,
U= 8 F=[F 000}
|
Then the equation{(Al) can be rewrite
as follows
R+UF+ F U (A2)

Let U, is the orthogonal complement

of U, then

U.= (A3)

oo 3
- OO

Z

0

0
_Bif

where Z=P7! Pre-multiplication of UT
and post multiplication of U, to the

equation(A2) is
UTRU<D (A4)
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and some simple algebraic manipulation,
we can obtain the equation (22)

{= For sufficiency we show that the
equation(22) establishes the existence of
a matrix function F such that the
equation (22) holds for all e=P. The

equation(22) can be written by

Y A"+ AY +YQY +R<0 (A5)
where
A=A+BDI(¥1-D\D,) 'Cy
+A4+BDL(AI-D|Dy) 'Cy
Q= ryC{(¥1-D|Dy) 'Cy
+ 7' Cil ¥ (¥1-DyDy) 'Cy
+ PCH(#1-D}Dy) 'ICu
—(1-4d.)s
R:Bl(YQI‘DlTLDu) VlB'lr
Let Z=Y ' and further expending of

equation(A5) by using Ap. Cg., we can

obtain

i

ATZ+7A +7B,(¥'1-D}D,) 'B|Z }

2

+ PFU[BIZ+DIC.]+ (2B, +cEDs]F} )

F'DIDF+ClC. <0
where
AS = A+Ad

+B,D,(¥1-D{D})) 'D{(C,+Ca)
B.=B,+B,(¥1-D\\D;)) 'D{D};

1
C.=(¥1-D{Dy) “(C,+Cy)
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_1
D,=(¥1-D|Dy °Dy

The equation above can be divided into
Riccatti
inequality(:1'} and the other 1is the

two parts one is matrix

algebraic equation which containing
state feedback gain(2). We note here
Riccatti inequality is
equivalent to the (1. 1)} block Schur

complement of the equation (22}. Thus,

that matrix

we can obtain the state feedback gain
F as

F=—+"%DID) YBTY '+D!C.) a6
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