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Design of Multistage Optimal Controller for Nonlinear Systems
Based on Multilayer Neural Networks

Byeong-woo Bae* and Kyung-youn Kim**

ABSTRACT

In this paper we describe a method to solve the optimal control problem of nonlinear
systems using neural networks which is called here as a two-level multilayer neural network
(TLMNN). The TLMNN has internal networks which consist of an upper-level neural
network (UNN) for modeling and a lower-level neural network (LNN) for control. The weights
of each network is optimized by introducing an augmented function so that a performance
measure is minimized. Some examples were used to illustrate the characteristics of the

proposed algorithm.

1. Introduction
control law becomes a tedious and time

There exist many methods, including comsuming task. Futhermore, optimization
classical frequency-domain techiques, for techniques generally consist of a math-
designing control laws for linear systems. ematical procedure and for this procedure
In contrast, there exist relatively few it Is necessary to have a mathematical
methods for nonlinear systems. Also, when representation of a system. When there
optimal control is employed, determination exist system uncertainties and system
of the optimal control law requires solution variations by environments around, the
of a partial differential equation in x and given mathematical mode! is not efficient
x (where x is the state and £ is the time); for a fine control performance. For that
unfortunately, when the order of the system reason, the modeling task is the first im-
is large the procedure to obtain optimal portant step before achieving a control law
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since the results of the optimization will be
critically dependent upon the validity of the
model.

QOur study is motivated from appearance
of neural networks, specifically multilayer
neural network (MLNN) based on back-
propagation learning algorithm, "’ which re-
cently have studied by control community. %
The MLNN has the potential to solve many
nonlinear control problems that cannot be
answered by conventional analytic ap-
proaches owing to its capability to learn
system characteristics through nonlinear
mapping.

liguni et al.'”® designed a controller that
integrates an classical optimal regulator and
backpropagation neural networks to handle
system uncertainties. Kawato et al.™
proposed a control method using both a
feedback error scheme and a inverse dy-
namic model using neural network: as
learning proceeded using output of feedback
error scheme, the inverse dynamic model
gradually took the place of the external
feedback as a main controller which may
cope with system uncertainties. However
these control systems have a disadvantage
that require a basic system model. Nguyen

et al. ¥

presented a self-learning control
system which is based on a conventional
multistage system and uses a neural
emulator trained as system model.

In this paper, a neural network-based

multistage control system is developed that
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we employ formal tools from classical op-

®8 {4 determine optimal

timal control theory
weights for a neural network whose task
is defined as the optimization of a specific
performance index. First of all, the strategy
of our algorithm is to tune parameters of
a controller and to obtain a control law by
the

method for modeling system dynamics is

feedforward computing. Secondly,

introduced to obtain a robust control
performance for system uncertainty. This
is very important problem in the control of
the real process since the optimal control
law can be obtained for the given system

dynamics.

2. Optimization Problem of Nonlinear
Control Systems

2.1 Overview of multistage systems

Consider a problem of minimizing a

performance measure of the general form

kel
J=hlz (k) )+ g* (z(k),u(k))

k=0

6}

subject to a sequential set of equality
constraints
z(k+1)=¢* (z(k),ulk)],

z(0) : given, k=0,1, -, k-1 (2)

where z (k) €ER® and u (k) ER" are the state
of the discrete-time nonlinear dynamical
system and the control input, respectively.

It is assumed that the final time k¢ is fixed
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and the final state x(ke¢) is free. Essen-
tially, the problem is to find the control law
u(k) that

measure J.

minimizes the performance
Now if we include (2) by introducing the
Lagrange multiplier p (k), the performance

measure can be augmented by

kel

L=h{z(k) I+ {g“(z k), uk))+p" (k+1)

k=0

(¢* (z(k), u k) )-z(k+1)1}
k-1

=h{z (k) )—p" (k) + > (H*—p" (k) z (k) )

k=]

+H* (3)

where the function H* called the Hamiltonian

is defined as follows :
H'=g"(z(k),u)J+PT(k+1)g" (x (k),u(k))
4

it is assumed that the dynamics of

(@)

unknown. Hence the conventional optimal

Here,

the system is to be unceretain or

control algorithm can not cope with the

LNN

2(k,0)

2Kk, T))

problem stated above. Now we describe the
TLMNN to obtain optimal control law for the

given uncertain or unknown system.

2.2 Optimization problem based on the
TLMNN structure

In this section we present a new control
algorithm which embeds parameter opti-
mization and derivation of the optimal con-
trol law based on the same sort of a basic
idea as the previous a multistage control
system.

First of all, we consider an architecture
of the optimal control system using the
MNN'’s which in this paper is called a two-
level MNN (TLMNN). TLMNN is composed
of an upper-level MNN (UNN) and a lower-
level MNN (LNN).
architecture of the proposed TLMNN.

Fig. 1 shows the

MNN

zu(k.Tu)

—

Fig.

~61-

1 Architecture of the TLMNN.
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The above figure shows a kth stage of
a multistage system using the TLMNN's,
which has the same structure as Fig. 1.
As shown in Fig. 2, the dynamic equation

of the UNN can be written as follows :

zo (k, t+1) =fu(Wu(k, t), zu (k, 1))

vV te(0, Tu-1) (5)
where the subscript u denotes upper-level
and fu(-) is an activation function which
is of a linear function type at last layer and
a sigmoid function type otherwise. And zu
(k,t), t=1,-, Ty,
output of the t-th layer of the UNN at kth
stage and Wy (k,t) is weight matrix between
the t-th and (t+1)-th layers. When t=T.-1,

represents the node

the equation (5) corresponds to the output
of the last layer of the UNN, zx(k+1),
which must be desired to be the state, (2).
Also, at t=0, z.(k,t) is the input of the
UNN, which is composed of the output of
the LNN and the external input, i.e., the
delayed state. Often the LNN is called a
feedforward coantroller the output of which
is obtained by feedforward computing not
by feedback and is used as the control
input.

The dynamic equation of the LNN is

ze(k, t+1) =, (We(k, t), ze (k, 1))

V te(0, Te1) (6)

where the subscript ¢ represents lower-

level, f¢e(-) equals with fu(-), and Wu(k,

t) is weight matrix between the t-th and

(t+1)-th layers. At the last layer of the
LNN the node output (6) corresponds to
the control input at kth stage and at t=0
is the external input, i.e., the desired state
and the delayed state.

Consider the performance measure

defined as the following form

1 1 k-1
===l x(k) —xq 1 i+ (12 (k)
2 2 k=0

—zg 14+ Fulk) —ug I 3} (7N

where ks denotes a final stage, and H, Q
and R are real symmetric positive semi-
definite penalty-weighting matrices.

The Lagrangian is

k-1 Tyl
L=J+3° 32" (k,t+1) (zak, t+1)

k=0 t=0
—fu (Wu (k, t) y Zu (k, t) ) ]

T~
+ zl,sf kt+Dze (X t+ 1) -fe(Wek,t), ze(k, t) )

i=0

+pT (k+1) (F(z,u, Wo) —x (k+1)) (8)

where 7 and B are referred to as the La-
grange multipliers of the t-th layer. whirh
are associated with the UNN and the LNN,
respectively, and p is the costate vector.

Assumed that the penalty-weighting
matrix of the last stage, H, equals to Q,
let decompose (7) into the additive quad-

ratic form by projection theorem, ® that is,
J=Jut+]e 9)

where

Ju=% §x (ko) —2 (ko) 1%
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LS (1200 -2 12
+__ ——
g Hel—==l Ig (10)

k-1
1= 1200~z 15+ 32 (1200 2,14
+lul)~ug 12 (1)

When the first term of the right-hand side
of (8) is substituted into (10), the
optimization problem is to estimate the dy-
namic characteristics of the system by
minimizing the decomposed performance
measure (10), which corresponds to
changing the weights of the UNN.
Accordingly, the solution is split into three

necessary conditions :

aL=0; aL —0; al

a7 2z, 2 Wypq

=0 (12)

where wupq iS a weight between the pth
node of the t-th layer and the gqth node of
the (t+1)-th layer of the UNN.

The first condition of (12) produces the
dynamic equation of each layer, which is
identical with the forward dynamic equation
(5). While satisfying (5) and holding W (k,
t} constant elements, from the second
condition, the Lagrange multiplier 7 (k,t) is

obtained as follows :

k T
r(k't)=<afu[wu(ka:2vzu( vt)]) T((k,t+l)
v te(0, Tu-1) (13)

with boundary condition
rk, To)=-Qlzk+1)—Z(k+1)) (14)

which is the backward equation of t-th

layer of the UNN,

Now consider differential changes in (8)
due to differential changes in the weights
of the UNN, which for extremum must be
zero. When using steepest descent tech-
nique, the third condition of (12) is written

as follows :

Awupq (k, t)

k f,(W, (k. t), z, (k,
oo (2R D, 2, 0)

k=0 2 W

T
) rk,t+1)

upq

{oflW,(k 1), 2,k 1))

K17}

T
) rik,t+1)

upq

k-1 (afu(Wu(k.t).z.,(k.t)]
Nuk

? wupq

T
) 7k, t+1)

_ ( 2f (W, (k, t),z,(k, t))
= Nux

2w

T
) rik, t+1)

upq

+77u(k—1)Awupq (k_l- t) (15)

where 7, is learning rate which determines
learning speed at kth stage and Na-ny IS
momentum constant. In the right~hand side

of the above equation (15) the first term
is the weight change term in the kth stage
and the second term is the momentum term
which equals to weight change of a previous
stage.

When the first term of the right-hand side
of (8) substitutes into (11), the optimization
problem corresponds to finding the optimum
weights of the LNN so that (11) is
minimized.

Necessary conditions for a minimum of

(11) are: a sequential set of equality
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constraints of each layer in the LNN is given

as (6), and the backward equation is

t T
ﬁ(k.t)=(°f’[W’(k't)'z‘(k‘ “) Bk, t+1)
22,
v te(0, T.-1] (16)
and the weight change is
£,0W, &, t),z, & I\
Awtpq(k.t)=n,(a AL o )
2 Wypq
Ak, t+1) + Ak +1,1) (17)

When t=T: at kth stage,

condition of the second subcondition (16)

the boundary

is

2L oL _
Tk T, sul T, O (18)
= gk, Te) =R{u (k) —udl
T
+(M) p (k-1) (19)
2U

where p(k+1) is costate vector.

Up to now, we derived the equations for
parameter optimization of the TLMNN. Now
we consider the control problem of the
TLMNN, which corresponds to obtaining the
boundary condition of the backward dynamic
equation (19). For convenience we define

a scalar sequence H* :

1

2
+77 (&, To)Fulz k), u(k), Wulk, 1))
+87 (k, T Felz(k), za (k), Welk, 1))
+p" (k+ 1) Fulz (k) u k), Wu(k, )] (20)

A stationary value of H® with respect to
Ak, T, ) will occur,

H* {1z —zq ha+ bu®) —ug &)

where we have the
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control law

_ aH*
ulk) = a8k, T)
=F(z(k),za(k+2), We(k, t)) 21)
Hence we obtain
_ oH*
2k+ D) =203
=Fulz(k), u(z), Wu(k)) (22)
_ 2 H* _ _
pk)= 220 =Q(x (k) —xd)
BF,[I (k) ,» Iy (k) ]
ppo B8k, Tu)
aF (z(k), z(k))
2z () pk+1) (23)
with boundary condition
p (ke) =Q(z (ks) —xa) 24)

and x(0) is given.

In summary, using equations (22) through
(24), the optimal control input is obtained
from the forward dynamic equation (21)
with the states and the weights of the
LNN : the weights of the UNN in (22) are
changed by (15) and of the LNN in (21)
are changed by (17) : the weight changes
require the backward dynamic equation;
(13) and (16) for parameter optimization
Up to this
point we derived the algorithm which
embeds the weight changes of the TLMNN

and (23) for optimal control.

and the development of the controller for

multistage optimal control, which is

summerized as follows :

Step 1: The sequence {(x,(n),xa(n)J}, n
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—

=(, 1,2, -} are generated by randomly
selecting x, and =« on a region of interest.
The values of the weights are randomly
generated with very small values.

Step 2: Obtain the state (2) and the
output of the UNN of each stage. At each
stage update the weights of the UNN using
the weight change equation (15) and the
backward equation (13).

Step 3:

conditions of all the stages from the costate

After obtainig the boudary

(23), at each stage change the weights of
the LNN using (16) and (17).
Step 4 : Repeat this procedure step 2 to

step 3 until the variation of the Lagrangian
with respect to the weights,

) (i)

is smaller than some pre—-chosen small

oL
aW‘ (k, t)

aL
BW‘ (k, t)

=

number depending on the accuracy of the

control performance required. This pro-
cedure can be commonly applied to off-line
and on-line operation.

X1, X2

3. Computer simulations

Example 1:
The problem is to minimize
1 X

J=7§{Ix(k)—rdlé+ fuk) 13
subject to

z,(k+1)=0.9z, (k) +0. 1z, (k) +0. 1u (k)

x; (k+1) =0. 2z, (k) +0. 1z, (k) —0. 1%, (k)

+0. lu (k)

where

Q=Q:2=0.05 R,;=0.1, R,,=0.05
with

£,(0)=10.0, =x.(0)=4.5

The only nonlinearity arises in the term
-0.1z%, in the equation for =,.

Figs. 2 through 3 show the optimal

trajectories of z,, x,, u,, u, where the
square-marked responses are trajectories for
the given system and the triangle-marked
responses are for the system in the presence
of the uncertain nonlinear term 0. 1z, (k) z, (k)

for each state.

X2

xxxxx

........

T

steps

Fig. 2 Optimal states(square-marked) and under system uncertainty(triangle-marked)
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Fig. 3 Optimal controls (square-marked) and under system uncertainty(triangle-marked)

Example 2:

We examine the power system which is
described as a sixth order non-linear
dynamical model,

The system equations can be written as

z,(k+1)=zx,(k) +Tr20)

z,(k+1) = (1-TC,\) z,— TC,sin (z, (k) ) x,

—0. 5Tsin (2z, (k) +T%

za(k+1) = (1-TC,) z, (k) + TCscos (z, (k) )
+Txe (k)
z,(k+1) =TK,u, (k) + TK,z, (k)
+ (1-T*K,) z, (k)
x5 (k+1) =TK,z, (k) + (1—TK;) z; (k)
xq (k+1) = TKeu, (k) + (1—TK,) 24 (k)
The parameters in the above equations
were calculated to be
C,=2.1656, C,=13.997, C,=-55.565,
C,=1.020, Cs=4.049,
K,= .4429, K,=1.0198, K;=1, K,=5.0,
K.=2.0408,
Ks=2.0408, K.=1.5, K,=0.5, M=0.0338,
T=0.05
The physical significance of the problem

is that it is assumed that a three phase to
ground fault of a short duration occurs on
the line side of the transformer and it is
desired to compute the optimal machine
excitation u, and the speeder governor
setting u, to bring the system back to
normal operation whilst minimizing the

following performance measure :

Ky
J= L 200~z 12+ Tu() 12

2 =0
where
Qu=4, Qu=4, R, =R.,=1
with

z(0)7=(1.7105 0.0 5.2 0.8 0.8 0.5)

For ki=40(i.e. 2 seconds), Figs. 4
through 9 show the resulting optimal
trajectories and Figs. 10 and 11 the optimal
controls. In each figures, squre-marked
response is control result of the given
system and triangle-marked response is
control result of the system varied when the
parameters, C,, C,, C;, C,, C;, of the

given system are varied by 10%.
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Fig. 4 Optimal state trajectory z,{square-marked) and in the presence of parameter variation
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(triangle-marked) .
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steps
Fig. 5 Optimal state trajectory z,(square-marked) and in the presence of parameter variation

(triangle-marked).

X.
6.6
5. 0]
4,63
3
4,03
3.53
e T S —
e. 0.0 20,0 30,0 4e.e
steps

Iig. 6 Optimal state trajectory =, (square-marked) and in the presence of parameter variation

{triangle-marked) .
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®
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-9.659

-1.8

2.0 10.@ 20.9 30.0 49.¢
steps

Fig. 7 Optimal state trajectory x,(square-marked) and in the presence of parameter variation

(triangle-marked).

10722
]
©. 64
]
4 W’
B o e e VNI S VU U
e, 19. 206.0 30.0 49.¢
steps

Fig. 8 Optimal state trajectory z,(square-marked) and in the presence of parameter variation
(triangle-marked).
X6

8.5

TEIRTRIRINNININTETNINTRINETRINTETUTRNIN]

2. 1 b T
2.0 10.@ 20.0 39.0 49,9
steps

Fig. 9 Optimal state trajectory z; (square-marked) and in the presence of parameter variation

(triangle-marked) .
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th
w.mq
]
1
-6, 0082
-6, 0006 4
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NPT H NSRS LR S st A
T o.8 10.@ 20.8 30.0 4e.e
steps

Fig. 10 Optimal contol input u, (square-marked) and in the presence of parameter variation

(triangle-marked) .

E.M- uz
] A\ M
°-m.’ \'/ = TR e
3
-0. 0005
0. 8818 FrrrrrrrrTTTTTTT T T
0.0 1e.8 20.0 3.0 40,¢
steps

Fig. 11 Optimal contol input u,(square-marked) and in the presence of parameter variation

(triangle-marked).

4, Conclusions

In this paper, we presents the multistage
optimal control algorithm with the TLMNN
structure, which was applied to systems
under uncertainties and variations. It is not

necessary to obtain the mathematical model

-69 -

and can obtain a robust control law which
is capable of compensating a modeling error
on the on-line operating. The suggested
control strategy is shown to be effective by
computer simulations for two selected

examples.
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