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The Onset of Convective Instability of
Viscoelastic Fluids in Porous Media
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ABSTRACT

A theoretical analysis of thermal instability driven by buoyancy forces is conducted

in an initially quiescent, horizontal porous layer saturated by viscoelastic fluids.

Modified Darcy’s law is used to explain characteristics of fluid motion. The linear

stability theory is employed to find the critical condition of the onset of convective

motion. The results of the linear stability analys shows that
prefer mode for a certain parameter range.

the overstabilty is

Key words : Convective instability, Viscoelastic fluid, Porous media

I. INTRODUCTION

From the beginning of this century

the convective motion driven by
buoyancy forces have attracted many
researchers’ interests. In this connection
buoyancy-driven pheonomena in porous
media are actively under investigation.
It is well known that the buoyancy-
driven phenomena in porous media have
a wide variety of engineering applications,

such as geothermal reservoirs, agricultural

sFdtE szt
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product storage system, packed-bed catalytic

reactors, the pollutant transport in

underground and the heat removal of
nuclear power plants.
With Newtonian fluid system of slow

Horton and Rogersm and
conducted the theoretical

analysis on the critical condition of the

heating
Lapwood(z)
onset of buoyancy-driven motion in
fluid-saturated horizontal porous layers.
They employed Darcy’s law to express
the flow characteristics in porous layers
and analysed the effect of Darcy number
on the onset condition of buoyancy-
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driven convection. Katto and Masuoka'®

showed experimentally the effect of the
Darcy number on the critical condition
of the
convection. In case of Newtonian fluid,

onset of buoyancy- driven
the critical condition to mark convective
motion has been analyzed under the
principle of the exchange of stabilities.
But viscoelastic fluids like polymeric

liquids can exhibit markedly different

stability properties. For the
Rayleigh-Benard problem, Vest and
Arpaci®”, and Kolka and lerley™

analyzed overstability of Maxwell fluid
and Oldroyd-B fluid, respectively. They
confirm that the buoyancy forces can
induce the periodic instability before the
exchange of stabilities. Recently, Lee et
al.®® extended overstability of Benard-
Marangoni problem into the viscoelastic
fluids.

In the present study we investigate
stability

which is

on a horizontal
staturated by
viscoelastic fluid. Here will be shown

the linear
porous layer
that for a certain parameter range the
periodic motion caused by overstability
is replaced by stationary modes.

ll. LINEAR STABILITY ANALYSIS

2.1 Governing Equations

The system
initially
horizontal porous layer of depth d, as

considered here is an

quiescent, fluid-saturated,
shown in Fig. 1. The porous medium is
isotropic, and

fluid. The
slowly from

homogeneous and
saturated by viscoelastic
heated
below. For this system the governing

porous layer is
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equations of flow and temperature fields
are expressed employing the Boussinesq

approximation and modified Darcy’s
model'”:
v-:u=0( (1)

(2)
- (/1,% +1)(— VP+p g)
a . -
( S +u V)T—av 7 (3)
e=pl1— A T—Ty] (4)
Tq
gl d
To+AT
Fig. 1 Schematic diagram of system
considered.

where u is the velocity vector, T the
temperature, P the pressure, g the
viscosity, K the permeability, a the
diffusivity, g the

5 the thermal

effective thermal

gravitational acceleration,
retardation

expansion coefficient, &,

time and A; relaxation time. The detailed

discussion on physical properties can be
found in the of Katto and
Masuoka®. The important parameters
to describe the present system are the

work

Darcy number Da, the Rayleigh number

Ra, and the dimensionless parameters A4
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and € defined by

and &= 7 (5)

where + denote the kinematic viscosity.
The dimensionless relaxation time A has

the meaning of the Deborah number.

2.2 Perturbation Equations

Under the linear stability theory the
disturbances caused by the onset of
thermal convection can be formulated.
in dimensionless form, in term of the

temperature component &; and the vertical

velocity component w; by decomposing

equations (1) ~ (4):

ﬁ(e%+l)v2wl

(6)
= Ra(/l%-i—l)vfﬁl
% —w = v?6, (7)
2 PY: 52 PY:
where v 32 + 357 + Py and
vi= 9* + 3* Th loci
1= xz —a yz . e velocity component

has the scale of a/d and the temperature

component has the scale of 47. The
proper boundary conditions are given by

w;=80,=0 at 2=0 and z=1 (8)

The boundary conditions represent no
flow through the boundaries and the

fixed temperature on the upper and
lower boundaries.

lIl. STABILITY EQUATIONS

3.1 Normal Mode Analysis

According to the normal mode
analysis. convective motion is assumed
to exhibit the horizontal periodicity (9).
Then the perturbed quantities can be

expressed as follows:

(wr, 2,5 2),0(r,x,,2)] ©
9
=[w,(2), 6,(2)]exp[i(ax+ a,y) + ot

where ” i 7 is the imaginary number
and o is the temporal growth rate.
With Re(0)>0 the system will become
unstable. With Re(o)=Im(0)=0 the
system becomes maginally stable and
the critical conditons to mark the

onset of stationary motion are well

1. 2
known'': ?

Rap. = 47 (10)

However, in addition to the above exchange
of stabilities. periodic instabilities can be
occur with viscoelastic fluid even though
Re(o)=0. To analyze this oscillatory

instabilty the amplitude functions, w; and

6, in equations (6) ~ (8) are set as
w,=w,+iw, and 6,=6,+10, (11)

Substituting the above equation (11)
into equations (6) and (7) produces the
usual amplitude functions in terms of
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the horizontal wave number
a=(al+ad) "2
(D' - ad)w,
=m{azo,~(e—ﬂ)0,~+ 21+ eAd))8,)
(12.a)
(Dz_a2)wi
- 1 2 1 2 g
1+(ea,~)2{a 0{A—&)8,+ a*(1+ eAd)) 8}
(12.b)
(D*—a®8,= Rapw,— 06, (13.a)
(D* - a®80,= Rapw;+ o8, (13.b)

z-directional
operator, dldz. The
boundary conditions are reduced to

where “D” is the

differential

w,=w,=0,=60;=0 at z=0

and z=1 (14)

The objective is to find the value of

Ra; to mark the onset of oscillatory

motion for a given a, € and A.

3.2 Solution Procedure

To solve the above stability equations
the outward shooting scheme is
employed. For the integration the upper
boundary conditions at z=1 must be
converted lower ones at z=0 so that the
present boundary value problem can be
converted to an initial value problem.

With the specified values of &, A, and

a, two eigenvalues Kap and o, and
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two initial conditions D@,.0) and D@L0)
are guessed. Since the governing
equations and boundary conditions are

all homogeneous, the initial conditions
Dwf0) and Dwl0) are

arbitrarily.

assigned

The integration is performed from
z={0 to z=1 with fourth order
Runge-Kutta-Gill method. If the guessed

values are all correct, the values of 6,

8,,w, and w, should be vanished at
z=1. The Newton-Raphson method is
used to obtained the better trial values
for the next iteration. The computation
is repeated untill the desirable accuracy
is obtained.

IV. RESULTS AND DISCUSSION

The stability criteria on the porous
layer saturated by viscoelastic fluid
have been ontained numerically. The
stability curves are obtained as function
of &, as shown in Fig. 2. On each curve

the minimum Rap; will be the critical

Darcy-Rayleigh number Rap, to mark
the buoyancy-driven motion. It is known
that this
Newtonian with A=e¢. For this limiting
stability
coincides with that of Horton and
® and Lapwood?. The effect of
A on the stability is illustrated in Fig.

porous layer becomes

case the present critria

Rogers

3. and it is known that with increasing
A the porous layer becomes more
unstable. Detailed stability conditions are
summarized in Fig. 4. The present results
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show that there can exist the
overstability of oscillatory motion. The
oscillatory motion is favored when

Ra p <47*. of which value is given by
equation (10).

120

100

Newtonia
8ot e=0.5

60

ROD

20+

Fig. 2 Neutral stability curves for
A=0.5

Newtonian
A=0.1

&
-
o
of
oo
o

a
Fig. 3 Neutral stability curves for
e=0.1

Now, it seems evident that viscoelastic
fluids exhibit markedly different stability

40

30

85— 6z o4 06 085 —To0
£
Fig. 4 Critical Rayleigh number vs. ¢

for various A4

properties as a results of possessing
some elasticity. Since € is related with
viscosity and A cocerns elasticity, the
system becomes more unstable with a
decrease in &, but with an increase in
A. It is noted that for the verification
of the above statement  refined
experimental work is needed since no

experimental evidence exists as of now.

V. CONCLUSIONS

The onset of buoyancy-driven motion
in a horizontal porous layer which is
saturated by viscoelastic fluid has been
analysed analytically by using linear
stability theory. It is known that
elasticity parameter is a desstabilizing
facror and for a certain parameter range
overstability is perferred mode.
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Aed $492 289 271 A e 9

159



Min-Chan Kim and Sang-Baek Lee

T2A oA 2N R 23le fusEe 94
AN E olgHez AN A9 £F
2 3 ¥ Darcydd & AH8-3ld N3 en,
AF 2] JARAE R7HsA MY A
o] & A3t #HHAF L vdehle
uf7iQate] HH ol w2} overstability7t HAE
F AL By

o

X,Y.2

NOMENCLATURE

dimensionless horizontal wave

number, V a2+ af

depth of layer (m]
differential operator. dfdz
Darcy number, K/d*

gravitational acceleration
[ms ™3
permeability

pressure

Rayleigh number, gBATd/m
Darcy-Rayleigh number, RaXx Da
temperature
velocity vector, [m s ']
dimensionless velocity components
of the Cartesian coordinate
dimensionless Cartesian

coordinate

Greek symbols

a

b

a1
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thermal diffusivity [m?s 7!
volumetric thermal expansion
coefficient [K ']
temperature difference (K]
retardation parameter
dimensionless temperature

(s

relaxation parameter

u viscosity [Kg/(m s)]

v kinematic viscosity [m s ']

o density [kg m 7%

0 temporal growth rate

z dimensionless time

Subscripts

c critical state

i imaginary part

T reference state or real part

0 basic state

1 perturbed state
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