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Abstract

We discuss comparison with the familiar bubble/spike penetration law com-
plicated by the lack of scale invariance, inability to carry the simulations to late
time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to
the method of data analysis. We use the simulation data to assess the validity of
recently proposed modelling assumptions characterizing the mixing process.

1 Introduction

We discuss comparison with the familiar bubble/spike penetration law k = aAgt? com-
plicated by the lack of scale invariance, inability to carry the simulations to late time,
the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method
of data analysis. The statistical evolution of a planar, randomly perturbed interface
subject to Rayleigh-Taylor instability is explored through direct numerical simulation
in two space dimensions. We use the simulation data to assess the validity of recently
proposed modelling assumptions characterizing the mixing process.

An interface between two fluids is subject to the Rayleigh-Taylor (RT) instability
when an external force is directed against the density gradient. This phenomenon is of
importance in natural and technological problems encompassing a vast array of length
scales, for example in supernova explosions, formation of salt diapirs, and laser implosion
of inertial confinement fusion targets. See [17] for an overview of this problem, and [14]
for further discussion.

As RT instability develops, small perturbations of a smooth contact surface rapidly
grow into interpenetrating fingers of the distinct materials. This mixing process is non-
linear and chaotic, in the sense of sensitive dependence on initial data. Furthermore,
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only the statistical properties of the initial interface perturbations are known. These fea-
tures point to a stochastic approach as the appropriate method to develop a predictive
model for the deterministic properties of an evolving mixing layer.

The most important quantity characterizing the mixing process is the mean concen-
tration fi(t, z) of fluid k at spatial position z and time ¢. In ICF, this function contains
all of the information concerning the expected penetration of the instability. In astro-
physics, it is a first order moment of the material interface geometry, a major ingredient
of a statistical description of remnant formation (for example). The concentration profile
is difficult to measure experimentally. In RT instability experiments, it is measurable
only for fluids of similar density, where an index of refraction match is feasible [7).

A major motivation for construction of a stochastic model of the fluid mixing is
therefore to predict fx. Most such efforts (12, 18, 8, 5, 6, 20, 2, 10] can be more or
less related to formal averages of the Euler or Navier-Stokes equations with a series of
closure hypotheses for nonlinear terms and boundary conditions. This research goes in
two directions, determined by whether the averaging is applied globally or within each
distinct material. The former approach leads to the Reynolds-averaged equations of
turbulence, while the latter leads to the equations of two-phase flow. In the two phase
flow approach, f; is a dependent variable, hence its prediction is accomplished by the
closure and solution of the averaged equations. The recovery of 8 from a turbulence
model is more difficult, unless there are only two fluids and they are both incompressible,
in which case fy is obtained from the mean density 7 (a dependent variable) and known
fluid densities p; and p;. For example, the fraction of fluid 1is 8 = (5 — p2)/ (1 — p2)-
See [3, 4].

We here discuss various aspects of the numerical solution of two-phase equations.
Our concern is the bubble/spike penetration. There is a large amount of literature on
this subject, and a comprehensive comparison of model, simulation, and experiment is
given by Dimonte {7]. We report the proportionality coefficients ay in the bubble/spike
penetration law Z; = (—1)*axAgt?, but we must point out that the mixing layers in
our computations do not reach a scale-invariant regime, although they do develop to the
same extent as reported in earlier FronT'ier simulations [2]. In fact, we find substantial
evidence of single-mode behavior of both bubbles and spikes.
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2 Growth Rate

The tracking of the contact surface allows use of the mathematical definitions of the
bubble and spike penetrations as the limits of vanishing layer fraction. Furthermore, we
directly compute an edge velocity as the fluid z-velocity evaluated at the position of the
leading bubble/spike tip, not as the numerical time derivative of the edge position. This
velocity is computed explicitly in the front-tracking method.

Other experiments and computations use a layer fraction criterion such as 1% — 99%;
i.e., the edges are defined to be where 8, attains the values 0.01 and 0.99. This practice
is intended to remove uncertainty in the edge positions due to outliers and/or physical or
numerical diffusion [8, 7], exhibited by "wings” in the layer fraction profile. The profiles
computed by FronTier are noticeably discontinuous in slope near the edges; there is
little tailing off or rounding of By in these regions. Consequently, the choice of cutoff is
not important.

A S profile with "wings” has small |83;/8z| near the edges, hence large gaps between
the corresponding 0%, 1%, and 5% contours, for example. The absence of this behavior
in the present data can be attributed to the absence of diffusive processes, numerical or
physical, in the simulations [16].

Since the computed flows are weakly compressible (final Mach number ~ 0.1), we
expect the edge trajectories to resemble the observed edge trajectories in experiments
using incompressible fluids [15, 18, 7). These experiments suggest the bubble side, a is
insensitive to the Atwood number A and observations fall within the range 0.05 to 0.07.
On the spike side, a; = o, at small A and increases with increasing A. The variation of
0/ with A is well characterized in the linear electric motor (LEM) experiments of [7].

The gt? asymptotic scaling of the edge trajectories is believed to corresponding to
a scale-invariant regime of incompressible RT mixing, where all lengths obey the same
scaling law. Self-similar behavior is partially exhibited when volume fraction profiles
taken at different times and horizontally scaled by the mixing zone width land nearly on
the top of each other, as occurs in our simulations. However, stabilization of the profile
shape may also occur for some time as a consequence of a stable mixing layer geometry.
The edge displacements in our simulations do not closely follow the gt? law.

Self-similarity of the velocity fields follows directly from integration of the two-phase
continuity equations assuming a scale-invariant volume fraction, because these equations
do not contain any closure assumptions. We are not aware of any experimental or
computational evidence for the scale invariance of the pressure fields.
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Our simulations, as well as previous front-tracking studies [11, 1, 9, 13], do not reach
a sufficiently late stage to observe substantially self-similar behavior. Youngs [19] has
also reported a similar observation. Therefore, the use of oy as a statistical summary of
the edge k motion should be treated with caution. There are multiple ways to compute
oy; all of these methods should converge in the limit ¢ — oo, but because this limit is
approached to varying degrees in computation and experiment, the specific method of
data analysis will likewise produce variations in ox. Here we present three methods to
compute a; and the corresponding results for our numerical study.

Methods A and B are based on the single hypothesis that an edge attains a constant
acceleration at late time, Vi = 2(—1)*axAg. It follows that (A) Z; = (—1)*axAgt® +
Viot+ Zio and (B) Vi = 2(~1)*a; Agt+Vio. These expressions are fit to the edge velocity
and position data by the least-squares method over a time interval that excludes the
very early evolution.

Method (C) is a least-squares fit to the trajectory Z; = (—1)arAgt? + Z}, over an
appropriate interval of time, which is similar to the method applied to experimental
data [15, 18], and to simulation data [11]. Youngs [19] was careful to point out the
possibility that the slope of |Z;| vs. Agt? does not satisfactorily reach its limiting value.

We compute the oy on a run-by-run basis, by recording the paths of the global inter-
face extrema within each realization. We could utilize the ensemble idea by analyzing
only the global interface extrema for the entire ensemble. This approach would select the
leading spike tip in run #35 and the leading bubble tip in run #6, which are respectively
the leading spike and bubble tips for the entire ensemble at all times (for both A = 0.5
and 0.8). There would then be no sampling involved and a leading bubble/spike tip
would be local to one realization. Thus we sample the growth rate on a run-by-run basis
in order to discern any statistical variation in a.

Values of ap computed by Method C are systematically higher and less scattered
than values computed by Method A. Methods A and C both use the position data, and
have 3 and 2 fitting parameters, respectively. For given input data, the fewer parameters
used in a least-squares fit, the more reproducible are the values of these parameters. The
stable reproducible values of oy obtained from Method C may be aesthetically pleasing
but they do not necessarily have a physical basis.

On the other hand, the high variation in Method A values of o is largely attenuated
by the large sample size (N = 20). Even though Method B uses one fewer parameter
than Method A, there is no attenuating effect on the o variation because the advantage
of having one less parameter is cancelled by the extra noise in the edge velocity data
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(compared to the position data). One might expect Methods A and B to be approxi-
mately equivalent, as one expression is the time derivative of the other, but the nonlinear
operation of least-squares fitting does not commute with differentiation. Method A and
B values of o, are similar to the extent that the velocity is linear in time. Also, the
edge velocity may have a discontinuity due to the leading structure tip being overtaken
by another tip, but the edge position is always continuous in ¢.

If there is a substantial time interval of scale-invariant growth, then all three methods
should yield approximately the same ay. They do not. For this reason, we prefer Method
B, because under its assumptions 2ax Ag has physical meaning as the average acceleration
of edge k. Methods A and C yield "effective accelerations” that are perhaps suitable
for comparison of simulations and experiments, provided that the method is applied
consistently, but do not by themselves have much physical significance.

Another consequence of the lack of self-similarity is that the value of ay is sensitive to
the choice of time interval for curve fitting. We present our computed values of a; for a
few setting of the lower and upper cutoff times ¢;, and j;, values a;and ag are computed
for each realization, and by each method. A value of ay is reported as the sample mean
for 20 realizations, and it is accompanied by the sample standard deviation. Attempts
to measure the variation of a; within a single realization, for example by systematic
variation of the cutoff times, where inconclusive. Results are displayed in Table 1, along
with the corresponding experimental values due to Dimonte and Schneider [7].

Method C values of a; are directly comparable to previous front-tracking results [1]
for coarser grids (approximately 13 cells/)). Our fine grid calculations (80 cells/)) give
a value of a; roughly 15% larger than before.

The data displayed in Table 1 reveals the sensitivity of oy to the method of data
analysis and the variation of o, from run to run. Note that the LEM values of oy are
smaller than the values obtained in rocket-rigged experiments (15, 18], for which o, is
in the range 0.06 — 0.07.

Comparing Method B values of a; to experimental values is meaningful, as the
numbers represent the average acceleration of the bubble/spike tips during the mixing
zone expansion. Our «; data is in good agreement with but systematically under the
LEM data. Our a5 data is over the LEM data at A = 0.5 and under it at A = 0.8.
Because our simulations do not reach a scale-invariant regime, it is important to consider
how the value of a; varies if the flow computation is carried to a later time.

The lack of gt? scaling in the bubble and spike trajectories is most apparent in graphs
of tip velocity vs. time, which should be linear during the time that the scaling law holds.

_11_



Hyeonseong Jin

The nonlinear growth of isolated RT bubbles and spikes has been studied in detail
by Zhang [21). Discarding the very brief initial state of small amplitude (exponential)
growth, the bubble/spike tip velocity undergoes a linear variation in time (constant
acceleration), gradually flattening out toward a terminal value. The study was not
carried to a sufficiently late time to determine whether the terminal velocity persists
indefinitely.

The two distinct regimes of nonlinear RT bubble/spike growth characterized by
Zhang are seen prominently in fine-grid computations with randomly perturbed in-
terfaces. In fact, our grid resolution on a per wavelength basis is comparable to the
resolution in Zhang's simulations. There is a noticeable tendency for single-mode fea-
tures in random surface simulations to be less prominent on coarser grids, with the
result that the bubble velocities are more nearly linear in ¢ for their entire evolution.
We suggest that a coarse grid artificially induces at earlier time the coarse-graining or
inverse cascade associated with a self-similar flow.

We see that the 40-cell trajectories are underresolved. It implies that a coarse-grid
effect may be misinterpreted as a true physical phenomenon. Because the mixing zone
expands more slowly on coarser grids, the 40-cell run was carried to a later time, late
enough so that the 40-cell zone width attains a final value roughly equal to the final
80-cell zone width. The values of oy are 0.078 (40 cells/)\) and 0.045 (80 cells/A) for
A = 0.5, and 0.083 (40 cells/)) and 0.047 (80 cells/)) for A = 0.8. We also find evidence
of single-mode behavior in the spike trajectory, but at 40 cells/)\ the spike trajectories
are too underresolved to draw similarly strong conclusions.

In graphs of tip velocity vs. ¢, we see to varying degrees a constant acceleration
inflecting to a constant velocity turning upward to a constant but different acceleration.
Perhaps only the latter acceleration should be considered in computing ax, but this
regime is not clearly distinguished in many of the realizations. One might expect to see
single-mode behavior more strongly attenuated in the bubble tip trajectory, due to the
onset of bubble competition, but we see little evidence of this behavior in our data.

Zhang [21] provided formulas for the terminal and inflection velocities for single-
mode RT bubbles and spikes. Evaluating his formulas using the average perturbation
wavelength A, we obtain values of the terminal velocity that land in the neighborhood of
the plateaus in the edge velocity curves and values of the single-mode inflection velocity
that are close to the multimode data. These observations indicate a substantial degree
of single-mode behavior in the trajectories of the leading bubble and spike tips.

In realizations having a prominent constant bubble/spike acceleration following the
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constant velocity regime, it is worthwhile to compute the associated value of oz, as this
value may be a more realistic indication of the late time mixing zone growth rate. For
the trajectories, we see straight-line fit to the late time constant acceleration portion.
The values of oy implied by these lines are a; = 0.066, close to experimental data, and
ap = 0.238, drastically higher than experimental data.

The reader may note another possible explanation for the noticeably single-mode
character of the bubble and spike trajectories; a high degree of regularity in the initial
data. Multimode behavior, especially bubble competition, is present to the extent that
the fingers are disparate in size and shape. Such disparities increase over time due to the
steady external acceleration, but the onset of multimode behavior is delayed if the fingers
are highly uniform at early time. The explanation may be valid, but it is incomplete,
as it requires a further explanation for the stronger multimode character of the edge
trajectories on coarse grids.
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ay, A=05
(0.0540.01)

2, A=05
(0.07+0.02)

o, A=08
(0.05+0.01)

Qag, A=08
(0.1940.03)

{tio, thi) Method A | D.S. | Method B | D.S. | Method C | D.S.
[0.24, 1.32] 0.039 0.009 0.043 0.008 0.079 0.006
[0.24, 1.42] 0.049 0.008 0.048 0.009 0.075 0.006
[0.36, 1.32] 0.033 0.010 0.044 0.009 0.077 0.006

[two, tns) | Method A | D.S. | Method B | D.S. | Method C | D.S.
[0.24, 1.32] 0.091 0.014 0.096 0.017 0.121 0.010
[0.24, 1.42] 0.092 0.014 0.102 0.016 0.119 0.010
[0.36, 1.32] 0.082 0.009 0.088 0.013 0.120 0.009

[tio, 2] | Method A | D.S. | Method B | D.S. | Method C | D.S.
[0.24, 1.14] 0.049 0.012 0.047 0.013 0.078 0.007
[0.24, 1.02] 0.048 0.011 0.049 0.013 0.082 0.006
[0.36, 1.14] 0.042 0.014 0.043 0.013 0.077 0.006

{tio,ths) | Method A | D.S. | Method B | D.S. | Method C | D.S.
[0.24, 1.14] 0.157 0.020 0.171 0.021 0.171 0.012
[0.24, 1.02] 0.150 0.020 0.155 0.018 0.171 0.012
[0.36, 1.14] 0.153 0.026 0.167 0.026 0.170 0.013

Table 1: The asymptotic bubble and spike penetration coefficients ayx computed by three
different least-squares fits on three different time intervals ¢ € [t;,, tp;]. The data shown
is the average of o over 20 runs and the standard deviation based on its run-to-rn
variation. The experimental value due to Dimonte and Schneider [7] is indicated on the

left hand side of each table.
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