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Bloch oscillations in the miniband transport in semiconductor superlattices
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A new theory of electron drift velocity in a miniband of a semiconductor superlattice is
presented and is compared with the work of Esaki and Tsu [1]. Our results are in good

agreement with the experimental valuse of Artaki et al [4].
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Esaki and Tsu (ET) [1] proposed that two different regimes can be identified when an electric
field E is applied to a semiconductor superlattice. At low fields, the current increases linearly
with field. In the high field regime, where the electric field exceeds some critical value E, , the
current is expect to decrease with increasing field, due to the electron reflection at the minizone
boundary (Bloch oscillation). Thus, ET [1] concluded that electrons in a miniband of a semicon-
ductor superlattice, accelerated by an electric field perpendicular to the superlattice layers can have
negative differential conductivity (NDC) versus electric field behavior. Recently, these predictions
were clearly demonstrated experimentally (2, 3] in semiconductor superlattices under the condition
of wide minibands. Nevertheless, the experimentally deduced peak velocity vg and the threshold
electric field E. (at which vy peaks) as functions of miniband width A, differ significantly from
the predictions of that of the ET theory [2]. Also, sophisticated Monte Carlo [4] computations for
a GaAs/GaAlAs superlattice yield a peak velocity smaller than that of the ET result by a factor
of 3 to 6. A detailed theory, which is based on a nonlinear balance-equation approach has been
developed by Lei et al [5]. Their theory is in remarkably good agreement with experimental data,
and it uses impurity scattering rate as an adjustable parameter to perform numerical calculations.
However, since the ET theory is very powerful in dealing with the basic physics of electronic trans-
port in semiconductor superlattice and since it is still in a rather simplified form, it is of great
interest to develop it into a more sophisticated form. In this paper we put the ET theory into a
new framework and we show that the extended theory not only provides a concrete picture for the
electronic transport in semiconductor superlattices, but also it agrees with the experimental data

very well.
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According to ET [1], the energy band of a superlattice with period d can be approximated by

a sinusoidal form

(1 — coskd) 1)

-
LA

where k is the wavevector along the superlattice axis, and A is the miniband width. In the presence
of a static field £ and with the energy and momentum relaxation being neglected, the equations

of motion are
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where v is the electronic velocity. The above equations yield a real space localized oscillatory

motion, the Bloch oscillation of electrons with velocity
v(t) = vpsinwpt, (3)

where wp = eEd/h is the Bloch frequency due to Bragg diffraction, and

_ Ad _ hkq _ 2h2

Taking account of the effects of relaxation, ET used Pippard’s impulse method [6} to obtain the
drift velocity as [1]
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and 7 is the relaxation time. From Eq. (5) it is clear that vy has a peak value, Vp , equal to vg/2
at wpT = 1. In other words, in the ET theory, the critical electric field is E = h/erd and the peak
drift velocity up = vp/2. In addition, one can easily see from Eq. (5) that ET conductivity oy is
ne?r/m(0) in the low field limit and o /whT? in the high field limit, respectively.

The ET theory is elegant and powerful but it is clear that a modification is necessary because
it does not totally agree with experimental results. In our opinion, the crux of the matter is that
the direct application of the Pippard method [6] by ET to the calculation of electron conduction
in the minibands of superlattices may not be totally valid. This is because of the fact that while
the start point of the Pippard impulse method is a free electron, an electron in the minibands of

a superlattice is best described by a sinusoidal miniband and thus is not free. As a result, one
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would expect that the ET theory has a tendency to overestimate the conductive behavior of the
electrons in the minibands of the superlattice. This is really the case when one compares theory
with experiment, where one finds that the experimental values of v4 and E, are much smaller than
that of the corresponding values given by the ET theory. Based on the above observation, our
plan to improve the ET theory is to discard the use of the Pippard’s impulse method and, instead,
incorporate the sinusoidal miniband nature of the electrons.

We start from the equation of motion for an electron in a sinusoidal miniband in the relaxation
time approximation [6-8]

dv v
T + == vowp cos kd (7N

where 7 is the relaxation time, vg and wp are given by Eq. (3). It is clear that in the no dissipaion
limit ( 1/7 — 0), Eq. (7) is consistent with Eq. (2) and Eq. (4).
Eq. (7) is a first order linear differential equation, the exact solution of which can be readily

obtained as
v(t) = vgcosd {sin (8 + wpt) —sin 0e“/'} , (8)
where we have taken v(0) = 0, and
sind = (1 +wdr2) "2 9)
We note that in the free electron limit ( d — 0), it is easy to see that Eq. (8) reduces to

o(t) = &7 (1 - e-‘/f) , (10)

‘m*
where we have used m(0) — m*, and m* is the effective mass of the electron in the bulk semicon-
ductor. Also, in the long time limit (t/7 >> 1), the last term in the bracket of Eq. (8) vanishes
and Eq. (8) reduces to

v(t) = vo cosfsin (§ + wpt), 1)

which is a pure periodic motion. Another important case of Eq. (8) is the weak dissipation limit
where t/r — 0. In this case, Eq. (7) is consistent with Eq. (2) and Eq. (4), and the velocity
v(t) in Eq. (7) takes the Bloch oscillation form Eq. (3). This implies that in addition to the well
known fact that Eq. (7) is a good approximation in the long time limit, it is also a good first
approximation in the weak dissipation limit. Finally, the time average of velocity v(t) of Eq. (8)
is an useful quantity, and for later discussion, we present here as

¢
a(t)=% fo o(f)dt =

T wpgeT

1
I _TB et —co t + —si t|. 12
vot ] +w§1‘2 [e swpt + P sinwpg (12)
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FIG. 1: Velocity v(t) (in units of vy = Ad/2A) of an electron in a sinusoidal miniband of a superlattice with
period d and external field E, as a function of time t (in units of 27 /wg), as calculated by (8), for variety
values of wpr= 0.5, 1, 5, 10, 100, where wg = eEd/h is the Bloch frequency, T is the relaxation time, and
A is the miniband width.

Equation (8) is a key results and it will form the basis of our further analysis. In Fig.1, we
plot v(t) (in units of uy) as a function of ¢ (in units of 2r/wp) for different values of wgr =
0.1,0.5,1.0,10,100. As can be seen from the figure, in the presence of a static electric field an
electron in a sinusoidal band with dissipation undergoes oscillating motion. When wgr >> 1, (and
from Eq. (9) one has & — 0), one has the high field (weak dissipation and strong field) limit ,
Eq. (8) reduces to Eq. (3), and the periods of the oscillation approach close values to 27 /wg.
As dissipation becomes stronger (wpT decreases), two main changes occur. First, the oscillation
period becomes much smaller than 27/wg when wpr < 1 (for example, at wgr = 0.5, the first
oscillation period is about 37/2wg). The other change is that the two sector within an oscillation
period become more uneven, i.e., an electron spends more time in one direction than the other. As
a result, with a static electric field the superlattice will show a net flow of electrons (the current).
Thus, Eq. (8) provides an concrete picture for the electronic motion in a superlattice with static
electric field. It tells us that an electron in a superlattice tends to undergo an oscillating motion.

In the high field limit (wgr >> 1), the oscillation is more or less periodic, while in the low field
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limit (wpT << 1), the oscillation becomes non-periodic. Therefore, it is necessary to analyze Eq.
(8) and Eq. (12) in the two limits, the high field limit and the low field limit, separately..

Since in the high field limit, one expects an electron undergoes Bloch oscillation in the super-
lattice, it is reasonable to take the first period of the electronic oscillation as identified by Eq. (8)
as the period of that Bloch oscillation. Based on this assumption, we now proceed to calculate the
actual value of the period T for the electronic Bloch oscillation in the high field limit. This can be
readily done by applying the condition v(T') = v(0) to Eq. (8), which results

e~T/T — coswpT
sinwgT ’

(13)

wpT =

Eq. (13) shows that T can take only some limited values. This is further illustrated in Fig. 2,
where we use Eq. (13) to plot T ( in units of 1/wp) as a function of 7 ( in units of 1/wp). As can
be seen from the figure, in the extreme high field limit (wpr — 00), wgT tends to 27. In fact, from

Eq. (13) after some straightforward algebra, one can derive the following analytical expression

1
wpT =2« (1 - ) for wpT >> 1 and wgT = 3—; + wpT for wpT << 1. (14)
B

2
Adopting the physical picture that the Bloch electron in superlattices in high field limit undergoes
periodic motion with a period defined by Eq. (13), the electronic drift velocity vq can be evaluated

as an average quantity over the time interval T. Thus, we obtain from Eq. (12)
T

va=9(T)= % A ot )dt = Uo% sinwpT, for wpr > 1 (15)
where T is determined by Eq. (13).

Eq. (15), supplemented by Eq. (13) gives the drift velocity (and the current) at the high field
limit and it should be a good approximation as long as wgT > 1 and system undergoes Bloch
oscillations. Some comments are in order: (i) When T = 27n/wp, there is no drift current, and
this will happen only in the wpT — oco. (ii) In the extrem high field limit, we substitute Eq. (13)
into Eq. (15), and our result Eq. (15) becomes the same as the ET formula Eq.(5), vq4 = vo/wpT.
It follows that the conductivity in this limit is go/w}72.

Next, we study the low field case of Eq. (12). In the low field limit (wg — 0), electrons in
superlattice tend to perform non-periodic motion, and it is necessary to have t/T >>1lin Eq. (12)
. In this case, Eq. (12) reduces to

wpT

t) ~ vg———
ut) vol+w§‘r2

[1 - %] , forwgr < 1. (16)

Eq. (16) is another interesting result. In the zero field limit, one expects that the drift velocity is
the long time (t — co) quantity of Eq. (16), va = vgwpT. For low but finite electric field, electrons
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FIG. 2: The period T (in units of 7/wp) of the electronic motion in a sinusoidal miniband of a superlattice
with period d and external field E, as a function of the relaxation time (in units of 1/wg), as calculated by
(12}, where wg = eEd/h is the Bloch frequency.

in the miniband of superlattice, may start to have some periodic motion, which reduces the overall
value of the drift velocity. The second term in the bracket of Eq. (16) representing such a reduction
proportional to w2372 (since t ~ 1/wp). After incorporating this fact, we propose an expression for
the drift velocity in the low field limit as

Vg = g Bl 1~
4= 1+(.u)23'r2

awpT], for wgr < 1 (17)
where is a some constant, which will be chosen to make the consistent connection to the high field
form Eq. (15).

We are now in a position to present the whole picture of the electronic drift velocity in the
superlattice. In Fig. 3 we plot vy (in units of wup) as a function of wpT/x by using Eq. (15) and
Eq. (13) for the high field region and Eq. (17) for the low field region, where we take @ = 5 to
make the smooth transition between the two regions. We note that the value of o does not affect
the peak value of v4. For comparison, we have also plotted the ET formula Eq. (5) (dotted line).
As can be seen from the figure, while the qualitative feature between our theory and the ET theory

are very similar, the vy in our theory is nevertheless, in general, much smaller than that of the ET
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FIG. 3: Drift velocity vg (in units of 7vg) in a superlattice with period d and external field E, as a function
of wg (in units of #/7). Full curve is calculated using (15) and (17). Dotted line is due to Esaki-Tsu formula
(5). Here wp = eEd/h is the Bloch frequency, 7 is the relaxation time, vg = Ad/2h, and A is the miniband
width.

result Eq. (5). This is reasonable since we have argued earlier that the ET theory has a trend to
overestimate the drift velocity. Only in the high and low field limits, our results approach the ET
theory. Also, the figure shows the quantitative differences: vq peaks at wpT = 2 with vp = 0.15%
in our theory, while in ET theory v, = vp/2 at wpT = 1.

Experimentally, Sibille et al. obtained recently, the evidence of miniband negative differential
velocity in GaAs/AlAs superlattices. By performing measurements and analysis over a variety of
small period superlattice samples, they were able to extract the peak drift velocity v, and the
corresponding E, as functions of miniband width A. Since these quantities are readily calculable
by our theory, it is interesting to compare our theory directly with that of the experiments. This
is done in Fig. 4, where we plot the dependence on for the peak velocity vp divided by the
superlattice period d. In that figure, dark dots are the experimental results from Ref.2, dotted
lines are predictions from the ET theory, and full curves are our theoretical results. From Fig. 3,

vp = 0.15vg (this value can be determined directly by using Eq. (13) to find out where vy, given
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FIG. 4: Peak velocity v, divided by the superlattice period d (in units of 10'3s~1) as a function of the
minband width A (in units of (meV). dark dots are the experimental results of Ref. 4, dotted lines are
the pridictions from the Esaki-Tsu fornula (5), and full curves are our theoretical results as calculated from
(15), (13) and (4).

by Eq. (15), reaches its peak value v,. Using this result in the definition Eq. (4) for vo, leads to
vp/d = 0.075A /h. (18)

We note that the full line in Fig. 4 exactly repeats the suggested guide line for the experimental
data in Fig. 3 of Ref. 2. Also, it is interesting to note that Eq. (18) presents a same qualitative
feature, ie., vp/d -~ A/h, as that of the ET theory, except that it reduces the numerical factor
from 0.25 in the ET theory to the number of 0.075, which agrees with experiments.

In summary, in this paper we have presented an analytic dynamic analysis of the electron
motion in semiconductor superlattices in an external electric field. By incorporating the sinusoidal
miniband nature of the electrons, we obtain the solution Eq. (8) for the velocity v(t), which is
applicable in both of the high and low field limit. By analyzing Eq. (8} in detail, it is found
that an electron in a superlattice with electric field undergoes oscillating motion. In the high field
limit, the oscillation is more or less periodic, while in the low field limit, the oscillation becomes

non-periodic. Based on these physical properties, we derive analytical expressions for the electron
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drift velocity, Eq. (15) (supplemented by Eq. (13)) in high field region and Eq. (17) in the low
field region. Our results show that while the qualitative feature between our theory and the ET
theory are very similar, the vg in our theory is nevertheless, in general, much smaller than that of
the ET result except in the extreme high and low ends of the field where the two theory agree.
Also, we find that the quantitative differences: vp peaks at wpT = 2 with v, = 0.15v9, while in ET

theory vp = vo/2 at wpT = 1. Our results are shown to agree with the experiments of Ref. 4.
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