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Abstract

An n X n matrix A is called idempotent if A> = A. Analogues of characteri-
zations of types of idempotent binary Boolean matrices are determined for the
semiring of nonnegative integers. Consequently we obtain that a nonnegative
integer matrix A is idempotent if and only if it is a sum of pure rectangle

parts and line parts.
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1 Introduction

A semiring is essentially a ring in which only the zero is required to have an
additive inverse. The set of all nonnegative integers, the Boolean algebra of subsets
of a finite set, and the fuzzy set are combinatorially interesting examples of semirings.

The characterization of idempotent matrices in abstract algebraic systems is a
vital problem that is crucial for the understanding the structure of these systems
and in many other applications ([4, 6, 8]). It is well-known that over any field the

structure of idempotent matrices is very simple, that is, each idempotent matrix is
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similar to a diagonal matrix with 0 and 1 on the main diagonal. But for matrices
over algebraic sYstenis that are not fields, this problem is far from being solved yet.

Bapat et al. ([1]) obtained characterizations of nonnegative real idempotent
matrices by some techniques and, Song and Kang (|9]) characterized all idempotent
binary Boolean matrices that are sums of four cells. Recently, Beasley et al. ([3])
showed that a binary Boolean matrix is idempotent if and only if it can be expressed
as a sum of line parts and rectangle parts of certain specific structure.

In this paper, we extend the results for the binary Boolean algebra to semiring
of all nonnegative integers.

2 Preliminaries and definitions

DEFINITION 2.1. ([5, 6]) A semiring S consists of a set S and two binary operations,
addition +, and multiplication -, such that

(1) S is an Abelian monoid under addition (identity denoted by 0);
(2) S is a monoid under multiplication (identity denoted by 1);

(3) multiplication is distributive over addition on both sides;
(4)s0=0s=0forall s€S.

A semiring S is called antinegative if the zero element is the only element with an
additive inverse.

Let Z, be the set of all nonnegative integers. Then Z, is a commutative an-
tinegative semiring which has no zero-divisors.

Let B = By be the (general) Boolean algebra of subsets of a k element set Si
and 01,03,...,0x denote the singleton subsets of Sy. Union is denoted by +, and
intersection by -; 0 denote the null set and 1 the set S;. Under these two operations,
B is a commutative antinegative semiring; all of its elements, except 0 and 1, zero-
divisors. In particular, B; = {0, 1} is called the binary Boolean algebra.

Let F = [0, 1] be the set of reals between 0 and 1 with addition (+), multiplication
() and the ordinary order < such that z + y = max{z,y} and z-y = min{z, y} for
all z,y € F. Then F becomes a commutative antinegative semiring which has no
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zero-divisors, and called the fuzzy set.

Throughout this paper, we will assume that S is a commutative antinegative
semiring, and let M,,(S) denote the set of all n X n matrices with entries in S. The
usual definitions for addition, multiplication by scalars, and the product of matrices
over fields are applied to S as well. The zero matrix is denoted by Oy, the identity
matrix by I, and the matrix with all entries equal to 1 is denoted by J,. The matrix
in M,,(S) all of whose entries are zero except its (%, 4)*, which is 1, is denoted by
E;;. We call this a cell.

The following is an immediate consequence of the rules of matrix multiplication.

PROPOSITION 2.2. For any cells E;; and E,,,, we have E;Ey, = Eyy or O,, according
asj=mu orj#u

DEFINITION 2.3. A matrix A € M,(S) is called idempotent if A* = A.

The matrices O, and I, are clearly idempotents in M,,(S). By Proposition 2.2,
we have that all diagonal cells are idempotents, but all off-diagonal cells are not
idempotents. The matrix J,, is idempotent over the general Boolean algebra, while
it is not idempotent over the nonnegative integers because J.2 =nJ, in M,(Z,).

DEFINITION 2.4. Let A = [a;;] be a matrix in My (S). If a;; # 0 for some ¢ and j,
then A,; is denoted by A;; = a;; E;;, and it is said to be the (4,5)*® weighted cell in
A. When i # j, we say that A;; is off-diagonal; Ay is diagonal.

For a matrix A = [a;;] € Ma(S), A can be written uniquely as ) ai;Ey;. Thus
i,=1

the matrix A is a sum of (3, )" weighted cellsin A foralli,j=1,...,n.

We say that a matrix A = [a;;] € M,(S) dominates a matrix B = [bi;] € Mn(S)
if and only if b;; # 0 implies that a;; # 0, and we write AJ Bor BC A.

Let A, B,C and D be matrices in M,(S). Then we can easily show that

if AC B and C C D, then we have AC C BD. (2.1)

Let A = [a; ;] be a matrix in M,(S). For any cell E;;, we have E;; C A if and only
if a;; # 0 if and only if Aj; is the (3, 7)™ weighted cell in A if and only if A;; C A.
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LEMMA 2.5. Let A be idempotent in Mn(S). Form > 2, if Aij,, A, N P
are (ir, jr)*™" weighted cells in A forr =1,...,m, then Ay j, Ay, - - Az C A.

Proof. Since each A, j, is a (4, j,)™ weighted cell in A, we have A;; C A
for r = 1,...,m. It follows from (2.1) that Ay ; Ay,j - Ai;,, C A™. Since A is
idempotent, we have A™ = A for m > 2. Thus the result follows. ]

LEMMA 2.6. Let A be idempotent in M, (S). If F is an off-diagonal cell with
F C A, then there exist distinct cells G and H with G, H C A such that F = GH.
Moreover if both cells G and H are off-diagonal, then the cells F,G and H are
mutually distinct.

Proof. Let Aiviys Aiggs « -+, Aipjm b€ (47, 3r)"" weighted cellsin Aforr =1,...,m
Then A = E A, ;.. Since A is idempotent, we have

r=1

ZA"'J" + Z A'-]-AHJt A= A= i A,‘,J‘r.
r=1

s,t=1,s7#t

Since F' C A, we have either F' C A; ;? or F T A,,;, Ai,j, forsomer,s,t € {1,...,m}
with s # ¢. Since F is off-diagonal, it follows from Proposition 2.2 that F IZ Ak
Thus we have F' C A, ;, A;,;, for some s,t € {1,...,m} with s # ¢. Let G and H be
cells with A;,;, C G and A;,;, CT H. Then clearly G,H C A and F C GH so that
F = GH since F and GH are all cells. Furthermore, if G and H are off-diagonal,
then F,G and H are mutually distinct by Proposition 2.2. [

DEFINITION 2.7. Let Aiivs Aigjys Aigjs and A, ;, be four weighted cells in A €
M, (S). Then X = 2 A ;. is called a frame in A if the four nonzero entries of X

constitute a rectangle w1th at least one entry on diagonal; X is pure if it has only

one nonzero diagonal entry.

a; a2 as
For example, consider a matrix A = [a; a5 0| € Ms(S), where a; # 0 for

0050,7
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alli =1,...,7. Then A has just 2 frames, and they are

a az 0 0 a; as
Xi=la, a5 0| and Xz={0 0 O
0 00 0 as ar

Here X, is pure, while X, is not.
Let A € M,,(S) be a given matrix. Fori =1,...,n, we define an
R;(A) of A as a matrix whose i** row is the same as the i*" row of A and the

b row matriz

other rows are zero. Similarly, we can define a j** column matriz C;(A) of A for
j =1,...,n. If the matrix A is clear from the context, we write R;(A) and C;(A)
as R; and Cj, respectively. Thus we have

A=5"Ri(A)=) CjA) or A= Y R;=)_C;
i=1 j=1 i=1 =1
DEFINITION 2.8. Let A be a matrix in M,(S). Then RP(i)[A] € M.(S) is called
an i*" rectangle part of A if the following hold:

(1) there is a frame X in A such that A; € X;

(2) for é.ny 1 < L,k < n, if A; and A, are weighted cells in A, then Ay is a
weighted cell in A;

(3) RP(i){A] is the matrix with the smallest number of weighted cells in A, and

dominates all frames in A dominating A;;.
Suppose that A € M,(S) has the *? rectangle part RP(i)[A]. Let
{Ajliv s aAj.i} and {Aiix Yooty Aiig}

be the sets of all off-diagonal weighted cells in C; and R;, respectively. Then we

s t s t
RP()[A] = Au + Z Aji+ Z Ay, + Z Z Ajiy-
k=1 =1

k=1 I=1

have
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by b b3 by
0 bs 0 b . .
Let B = , where all b;’s are nonzero in S. Then there exists the
b bs b
0 0 0 0
3 rectangle part of B and RP(3)[B] = Bi1+ Bia + Bys + B3y + Bsz + Bss. However

any i'® rectangle part of B does not exist for all i = 1,2 and 4.

DEFINITION 2.9. Let A be a matrix in My (S). Then LP(5)|A] € M,(S) is called
an i** line part of A if the following hold:

(1) A« € A and LP(5)[A] = R; + C;;
(2) R; + C; is the i*" row matrix or the 5*® column matrix of A.

Let X = a b and Y = o ol where a,b and ¢ are nonzero in S. Then
c c

LP(1)[X] = aEy; + bE\; and LP(2)[X] = bEy; + cEy,, while Y do not have line
parts.

3 Some results

In this section, we give some properties of idempotent matrices in M., (S), where
S is a commutative antinegative semiring. For this purpose, we shall analyze the
structures of the sums of weighted cells.

For any matrix A = [a;;] in M,(S), define the matrix A* = [af;] in My (B,) as
aj; = 1 if and only if a;; # 0. If S is a semiring which has no zero-divisors, then we
can easily show that

(A+B)*=A"+B*, (AB)*=A'B* and (ad)' =a*A’ (3.1)
for all A, B € M, (S) and for all « € S.

The following is an immediate consequence of (3.1).

PROPOSITION 3.1. Let S be a semiring which has no zero-divisors. If A is idempo-
tent in M,(S), then A* is idempotent in M, (By).
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For weighted cells A;, Ay, ..., Am in A € My(S), they are called collinear if

m
Y. A; C X, where X is either an i*" row matrix or a j'® column matrix of A.
i=1

LEMMA 3.2. ([3]) Let A be a nonzero matriz in My (B1).
(1) If all cells in A are off-diagonal, then A is not idempotent,

(2) Assume there ezists an off-diagonal cell F T A such that for any diagonal cell
EC A, E and F are not collinear. If A is idempotent, then F is in a pure

frame in A.
COROLLARY 3.3. Let Ay, ..., Am be all weighted cells in A € My(S).
(1) If all A; are diagonal, then A is idempotent if and only if all A; are idempotent;
(2) If S has no zero-divisors and all A; are off-diagonal, then A is not idempotent.

Proof. Let A =Y Ai. (1) Suppose that all A; are diagonal. It follows from
i=1
Proposition 2.2 that A is idempotent if and only if

AA 4+ -+ ApAn=A'=A=A+ -+ An

if and only if A = A; foralli=1,...,m.

(2) If all A; are off-diagonal, then by (3.1) A* is just sum of off-diagonal cells in
M, (B,). It follows from Lemma 3.2-(1) that A* is not idempotent. Therefore A is
not idempotent by Proposition 3.1. |

COROLLARY 3.4. Let S be a semiring which has no zero-divisors, and let A be
idempotent in Mn(S). If A has an off-diagonal weighted cell Ai; such that A is
not collinear with any diagonal weighted cell in A, then A;; is in a pure frame in A.

Proof. Since A is idempotent in M, (S) with Ay C A, sois A* in M,(B,) with
E;; T A* by Proposition 3.1. It follows from Lemma 3.2-(2) that E;; is in a pure

frame in A*, equivalently A;; is in a pure frame in A. [ ]
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Let A € Mu(S). For 1 <4, <n, R; and C; are said to be (3, j)-disjoint if
AizAyi = O, for any off-diagonal weighted cell A;; in R; and for any off-diagonal
weighted cell A,; in C;.

LEMMA 3.5. Let A be idempotent in M,(S). If R; and C; are not (1, 7)-disjoint,
then Ai; is the weighted cell in A.

Proof. If R; and C; are not (4, j)-disjoint, then there exist off-diagonal weighted
cells A;; in R; and Ay; in C; such that AizAy; # O,. Since A is idempotent,
AizAy; © A by Lemma 2.5. It follows from Proposition 2.2 that ¢ = y so that
ai; # 0. Hence A;; is the weighted cell in A. ]

The number of nonzero entries of A € M,(S) is denoted by |A]|.

LEMMA 3.6. LetS be a semiring which has no zero-divisors, and let A be idempotent
in Mn(S) with A C A for some i. If |Ri| =s+1 and |C;| = t + 1, then there ezist
exactly s -t frames in A dominating A,;.

Proof. 1f s =0 or t = 0, then the result is straightforward. Thus we can assume
that s,t > 1. Since A is idempotent, Lemma 2.5 and Proposition 2.2 implies that
for any off-diagonal weighted cells

AxCR;CA and AyCC;C A4,

their product Ay, Ay C A so that Ay C A. Therefore, the four weighted cells
Aii, Aki, Ay and Ay are in a frame in A for each k,lsuch that A; C A and A; C A.
Thus A has at least s - ¢ frames such that each frame dominates Aii. Tt follows from
the definition of frame that A has at most s - ¢ frames dominating A;;. n

Let B = B, be the Boolean algebra of a two element set S2, and let

1 gy o3
A= (o0} 0 02 €M3(B2) (32)
g o 0
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Then we can easily show that A is idempotent in Ms(B;). Notice that [R,| =
2+ 1 = |C}|. But A has only two frames dominating A;;. Thus, the condition that
S has no zero-divisors in Lemma 3.6 is needed.

Let A = [ai;] be idempotent in M,(S), where S is a semiring which has no
zero-divisors. If a; # 0, |[Ry| > 1 and |Cy| > 1, then Lemma 3.6 shows that the ith
rectangle part of A exists.

THEOREM 3.7. Let S be a semiring which has no zero-divisors. If A is idempotent
in M,(S), then every weighted cell in A is in either a rectangle part or a line part
of A.

Proof. 1t follows directly from Corollary 3.4 and Lemma 3.6. [ ]

The matrix A in (3.2) also shows that the condition(S has no zero-divisors) is
needed in Theorem 3.7 because A has neither a rectangle part nor a line part.

4 Idempotent matrices over nonnegative integers

In this Section, we shall characterize idempotent matrices over nonnegative in-
tegers.
Let A be a nonzero idempotent matrix in My(Z,). Then A has at least one
diagonal weighted cell in A by Corollary 3.3-(2). Furthermore we can easily show
that if A;; is a diagonal weighted cell in A, then we have Ay = By

LEMMA 4.1. Let Ay; be an off-diagonal weighted cell in A € ML(Z,). If As and
Aj; are diagonal weighted cells in A, then A is not idempotent.

Proof. Since Ay, A;; and A;; are weighted cells in A, we have that ai;, a;; and
a;; are all nonzero in Z,. Then the (4,7)*™ entry bi; of A? is greater than that of A

because

n
bi; = Zaikakj > aiiaij + @055 = (i + @55)8i5 = 2055 > Gij.
k=1
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Hence A is not idempotent. ]

Let RP(:)[A] be an i** rectangle part of A € M,(S). Then RP(i)[A] is called
pure if it has only one nonzero diagonal entry.

COROLLARY 4.2. If RP(i)[A] is an ©™ rectangle part of an idempotent matriz
A€ My(Z,), then it is pure.

Proof. 1t follows from Lemma 4.1. »

LEMMA 4.3. Let A be a matriz in M,(Z,) with A; C A and Aj; € A for some
indices 1 and j. If R; and C; are not (i, j)-disjoint, then A is not idempotent.

Proof. 1f i # j, the result follows from Lemmas 3.5 and 4.1. So we may assume
that ¢ = j. Since R; and C; are not (3, 1)-disjoint, there exist at least two off-diagonal
weighted cells A;; C R; and Ay C C; such that AizAyi # On. By Proposition 2.2,
we have x = y. Since A,; C A and A;, C A, it follows from Lemma 2.5 that
AsiAiz © A and hence A;, C A by Proposition 2.2. That is, Az, Ay, Az C A. By
Lemma 4.4, A is not idempotent. |

Consider a matrix

1020
3060

A= € My(Z.).
000 4 «(Z+)
0001

Then A is the sum of one 1** pure rectangle part and one 4 line part. But R; and
Cj are not (1, 4)-disjoint. By Lemma 4.3, A is not idempotent.

THEOREM 4.4. Let A be a matriz in M, (Z,). Then A is idempotent if and only if
the followings are satisfied:

(1) there erist integers s,t > 0 such that A is the sum of s pure rectangle parts
and t line parts,

(2) each pure rectangle part is idempotent,

_10_
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(3) each line part is idempotent,
(4) for anyi,j € {1,...,n}, Ri and C; are (3, §)-disjoint.

Proof. It is routine to check that a matrix satisfying the four conditions is
idempotent. To show the opposite implication, assume that A is idempotent. Let
A;; be a weighted cell in A. By Theorem 3.7 and Corollary 4.2, A,; is in some pure
rectangle part or some line part of A. Thus, there exist integers s,t > 0 such that
A is the sum of s pure rectangle parts and ¢ line parts. Thus (1) is satisfied. (4)
follows from Lemma 4.1. (2) and (3) are obvious by (4). []

Thus we have characterizations of all idempotent matrices over the nonnegative

integers.
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