ANALYSIS OF IDEMPOTENT MATRICES OVER NONNEGATIVE INTEGERS

Seok-Zun Song and Hee-Jeong Han

Department of Mathematics, Cheju National University, Jeju 690-756, Republic of Korea

Abstract

An $n \times n$ matrix A is called *idempotent* if $A^2 = A$. Analogues of characterizations of types of idempotent binary Boolean matrices are determined for the semiring of nonnegative integers. Consequently we obtain that a nonnegative integer matrix A is idempotent if and only if it is a sum of pure rectangle parts and line parts.

Keywords: Nonnegative integers, idempotent matrix, frame, rectangle part, line part.

AMS Subject Classifications: 06E05, 15A21, 15A33.

1 Introduction

A semiring is essentially a ring in which only the zero is required to have an additive inverse. The set of all nonnegative integers, the Boolean algebra of subsets of a finite set, and the fuzzy set are combinatorially interesting examples of semirings.

The characterization of idempotent matrices in abstract algebraic systems is a vital problem that is crucial for the understanding the structure of these systems and in many other applications ([4, 6, 8]). It is well-known that over any field the structure of idempotent matrices is very simple, that is, each idempotent matrix is

similar to a diagonal matrix with 0 and 1 on the main diagonal. But for matrices over algebraic systems that are not fields, this problem is far from being solved yet.

Bapat et al. ([1]) obtained characterizations of nonnegative real idempotent matrices by some techniques and, Song and Kang ([9]) characterized all idempotent binary Boolean matrices that are sums of four cells. Recently, Beasley et al. ([3])showed that a binary Boolean matrix is idempotent if and only if it can be expressed as a sum of line parts and rectangle parts of certain specific structure.

In this paper, we extend the results for the binary Boolean algebra to semiring of all nonnegative integers.

2 Preliminaries and definitions

DEFINITION 2.1. ([5, 6]) A semiring S consists of a set S and two binary operations, addition +, and multiplication \cdot , such that

- (1) S is an Abelian monoid under addition (identity denoted by 0);
- (2) S is a monoid under multiplication (identity denoted by 1);
- (3) multiplication is distributive over addition on both sides;

(4) s0 = 0s = 0 for all $s \in S$.

A semiring S is called *antinegative* if the zero element is the only element with an additive inverse.

Let \mathbb{Z}_+ be the set of all nonnegative integers. Then \mathbb{Z}_+ is a commutative antinegative semiring which has no zero-divisors.

Let $\mathbf{B} \equiv \mathbf{B}_k$ be the (general) Boolean algebra of subsets of a k element set S_k and $\sigma_1, \sigma_2, \ldots, \sigma_k$ denote the singleton subsets of S_k . Union is denoted by +, and intersection by \cdot ; 0 denote the null set and 1 the set S_k . Under these two operations, **B** is a commutative antinegative semiring; all of its elements, except 0 and 1, zerodivisors. In particular, $\mathbf{B}_1 = \{0, 1\}$ is called the *binary Boolean algebra*.

Let $\mathbf{F} = [0, 1]$ be the set of reals between 0 and 1 with addition (+), multiplication (.) and the ordinary order \leq such that $x + y = \max\{x, y\}$ and $x \cdot y = \min\{x, y\}$ for all $x, y \in \mathbf{F}$. Then \mathbf{F} becomes a commutative antinegative semiring which has no zero-divisors, and called the fuzzy set.

Throughout this paper, we will assume that S is a commutative antinegative semiring, and let $\mathcal{M}_n(S)$ denote the set of all $n \times n$ matrices with entries in S. The usual definitions for addition, multiplication by scalars, and the product of matrices over fields are applied to S as well. The zero matrix is denoted by O_n , the identity matrix by I_n and the matrix with all entries equal to 1 is denoted by J_n . The matrix in $\mathcal{M}_n(S)$ all of whose entries are zero except its $(i, j)^{\text{th}}$, which is 1, is denoted by E_{ij} . We call this a *cell*.

The following is an immediate consequence of the rules of matrix multiplication.

PROPOSITION 2.2. For any cells E_{ij} and E_{uv} , we have $E_{ij}E_{uv} = E_{iv}$ or O_n according as j = u or $j \neq u$.

DEFINITION 2.3. A matrix $A \in \mathcal{M}_n(\mathbb{S})$ is called *idempotent* if $A^2 = A$.

The matrices O_n and I_n are clearly idempotents in $\mathcal{M}_n(\mathbb{S})$. By Proposition 2.2, we have that all diagonal cells are idempotents, but all off-diagonal cells are not idempotents. The matrix J_n is idempotent over the general Boolean algebra, while it is not idempotent over the nonnegative integers because $J_n^2 = nJ_n$ in $\mathcal{M}_n(\mathbb{Z}_+)$.

DEFINITION 2.4. Let $A = [a_{ij}]$ be a matrix in $\mathcal{M}_n(\mathbb{S})$. If $a_{ij} \neq 0$ for some *i* and *j*, then A_{ij} is denoted by $A_{ij} = a_{ij}E_{ij}$, and it is said to be the $(i, j)^{\text{th}}$ weighted cell in A. When $i \neq j$, we say that A_{ij} is off-diagonal; A_{ii} is diagonal.

For a matrix $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{S})$, A can be written uniquely as $\sum_{i,j=1}^n a_{ij} E_{ij}$. Thus the matrix A is a sum of (i, j)th weighted cells in A for all i, j = 1, ..., n.

We say that a matrix $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{S})$ dominates a matrix $B = [b_{ij}] \in \mathcal{M}_n(\mathbb{S})$ if and only if $b_{ij} \neq 0$ implies that $a_{ij} \neq 0$, and we write $A \supseteq B$ or $B \sqsubseteq A$.

Let A, B, C and D be matrices in $\mathcal{M}_n(S)$. Then we can easily show that

if $A \sqsubseteq B$ and $C \sqsubseteq D$, then we have $AC \sqsubseteq BD$. (2.1)

Let $A = [a_{i,j}]$ be a matrix in $\mathcal{M}_n(\mathbb{S})$. For any cell E_{ij} , we have $E_{ij} \sqsubseteq A$ if and only if $a_{ij} \neq 0$ if and only if A_{ij} is the (i, j)th weighted cell in A if and only if $A_{ij} \sqsubseteq A$.

LEMMA 2.5. Let A be idempotent in $\mathcal{M}_n(\mathbb{S})$. For $m \geq 2$, if $A_{i_1j_1}, A_{i_2j_2}, \ldots, A_{i_mj_m}$ are $(i_r, j_r)^{\text{th}}$ weighted cells in A for $r = 1, \ldots, m$, then $A_{i_1j_1}A_{i_2j_2}\cdots A_{i_mj_m} \sqsubseteq A$.

Proof. Since each $A_{i_rj_r}$ is a $(i_r, j_r)^{\text{th}}$ weighted cell in A, we have $A_{i_rj_r} \sqsubseteq A$ for $r = 1, \ldots, m$. It follows from (2.1) that $A_{i_1j_1}A_{i_2j_2}\cdots A_{i_mj_m} \sqsubseteq A^m$. Since A is idempotent, we have $A^m = A$ for $m \ge 2$. Thus the result follows.

LEMMA 2.6. Let A be idempotent in $\mathcal{M}_n(\mathbb{S})$. If F is an off-diagonal cell with $F \sqsubseteq A$, then there exist distinct cells G and H with $G, H \sqsubseteq A$ such that F = GH. Moreover if both cells G and H are off-diagonal, then the cells F, G and H are mutually distinct.

Proof. Let $A_{i_1j_1}, A_{i_2j_2}, \ldots, A_{i_mj_m}$ be $(i_r, j_r)^{\text{th}}$ weighted cells in A for $r = 1, \ldots, m$. Then $A = \sum_{r=1}^{m} A_{i_rj_r}$. Since A is idempotent, we have

$$\sum_{r=1}^{m} A_{i_r j_r}^2 + \sum_{s,t=1,s\neq t}^{m} A_{i_s j_s} A_{i_t j_t} = A^2 = A = \sum_{r=1}^{m} A_{i_r j_r}.$$

Since $F \sqsubseteq A$, we have either $F \sqsubseteq A_{i_r j_r}^2$ or $F \sqsubseteq A_{i_s j_s} A_{i_t j_t}$ for some $r, s, t \in \{1, \ldots, m\}$ with $s \neq t$. Since F is off-diagonal, it follows from Proposition 2.2 that $F \not\sqsubseteq A_{i_r j_r}^2$. Thus we have $F \sqsubseteq A_{i_s j_s} A_{i_t j_t}$ for some $s, t \in \{1, \ldots, m\}$ with $s \neq t$. Let G and H be cells with $A_{i_s j_s} \sqsubseteq G$ and $A_{i_t j_t} \sqsubseteq H$. Then clearly $G, H \sqsubseteq A$ and $F \sqsubseteq GH$ so that F = GH since F and GH are all cells. Furthermore, if G and H are off-diagonal, then F, G and H are mutually distinct by Proposition 2.2.

DEFINITION 2.7. Let $A_{i_1j_1}, A_{i_2j_2}, A_{i_3j_3}$ and $A_{i_4j_4}$ be four weighted cells in $A \in \mathcal{M}_n(S)$. Then $X = \sum_{r=1}^{4} A_{i_rj_r}$ is called a *frame in A* if the four nonzero entries of X constitute a rectangle with at least one entry on diagonal; X is *pure* if it has only one nonzero diagonal entry.

For example, consider a matrix
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & 0 \\ 0 & a_6 & a_7 \end{bmatrix} \in \mathcal{M}_3(\mathbb{S})$$
, where $a_i \neq 0$ for

all i = 1, ..., 7. Then A has just 2 frames, and they are

$$X_1 = \begin{bmatrix} a_1 & a_2 & 0 \\ a_4 & a_5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad X_2 = \begin{bmatrix} 0 & a_2 & a_3 \\ 0 & 0 & 0 \\ 0 & a_6 & a_7 \end{bmatrix}.$$

Here X_2 is pure, while X_1 is not.

Let $A \in \mathcal{M}_n(\mathbb{S})$ be a given matrix. For i = 1, ..., n, we define an i^{th} row matrix $\mathbf{R}_i(A)$ of A as a matrix whose i^{th} row is the same as the i^{th} row of A and the other rows are zero. Similarly, we can define a j^{th} column matrix $C_j(A)$ of A for j = 1, ..., n. If the matrix A is clear from the context, we write $\mathbf{R}_i(A)$ and $C_j(A)$ as \mathbf{R}_i and C_j , respectively. Thus we have

$$A = \sum_{i=1}^{n} \mathbf{R}_{i}(A) = \sum_{j=1}^{n} \mathbf{C}_{j}(A)$$
 or $A = \sum_{i=1}^{n} \mathbf{R}_{i} = \sum_{j=1}^{n} \mathbf{C}_{j}$.

DEFINITION 2.8. Let A be a matrix in $\mathcal{M}_n(\mathbb{S})$. Then $RP(i)[A] \in \mathcal{M}_n(\mathbb{S})$ is called an i^{th} rectangle part of A if the following hold:

- (1) there is a frame X in A such that $A_{ii} \sqsubseteq X$;
- (2) for any $1 \leq l, k \leq n$, if A_{li} and A_{ik} are weighted cells in A, then A_{lk} is a weighted cell in A;
- (3) RP(i)[A] is the matrix with the smallest number of weighted cells in A, and dominates all frames in A dominating A_{ii} .

Suppose that $A \in \mathcal{M}_n(\mathbb{S})$ has the *i*th rectangle part RP(i)[A]. Let

$$\{A_{i_1i_1}, \ldots, A_{i_ki_k}\}$$
 and $\{A_{ii_1}, \ldots, A_{ii_k}\}$

be the sets of all off-diagonal weighted cells in C_i and R_i , respectively. Then we have

$$RP(i)[A] = A_{ii} + \sum_{k=1}^{s} A_{j_k i} + \sum_{l=1}^{t} A_{ii_l} + \sum_{k=1}^{s} \sum_{l=1}^{t} A_{j_k i_l}.$$

Let
$$B = \begin{vmatrix} b_1 & b_2 & b_3 & b_4 \\ 0 & b_5 & 0 & b_6 \\ b_7 & b_8 & b_9 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$
, where all b_i 's are nonzero in S. Then there exists the

3th rectangle part of B and $RP(3)[B] = B_{11} + B_{12} + B_{13} + B_{31} + B_{32} + B_{33}$. However any *i*th rectangle part of B does not exist for all i = 1, 2 and 4.

DEFINITION 2.9. Let A be a matrix in $\mathcal{M}_n(S)$. Then $LP(i)[A] \in \mathcal{M}_n(S)$ is called an i^{th} line part of A if the following hold:

- (1) $A_{ii} \subseteq A$ and $LP(i)[A] = \mathbf{R}_i + \mathbf{C}_i$;
- (2) $\mathbf{R}_i + \mathbf{C}_i$ is the *i*th row matrix or the *i*th column matrix of A.

Let $X = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ and $Y = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$, where a, b and c are nonzero in S. Then $LP(1)[X] = aE_{11} + bE_{12}$ and $LP(2)[X] = bE_{12} + cE_{22}$, while Y do not have line parts.

3 Some results

In this section, we give some properties of idempotent matrices in $\mathcal{M}_n(S)$, where S is a commutative antinegative semiring. For this purpose, we shall analyze the structures of the sums of weighted cells.

For any matrix $A = [a_{ij}]$ in $\mathcal{M}_n(\mathbb{S})$, define the matrix $A^* = [a_{ij}^*]$ in $\mathcal{M}_n(\mathbb{B}_1)$ as $a_{ij}^* = 1$ if and only if $a_{ij} \neq 0$. If \mathbb{S} is a semiring which has no zero-divisors, then we can easily show that

 $(A+B)^* = A^* + B^*, \quad (AB)^* = A^*B^* \text{ and } (\alpha A)^* = \alpha^*A^*$ (3.1)

for all $A, B \in \mathcal{M}_n(\mathbb{S})$ and for all $\alpha \in \mathbb{S}$.

The following is an immediate consequence of (3.1).

PROPOSITION 3.1. Let S be a semiring which has no zero-divisors. If A is idempotent in $\mathcal{M}_n(S)$, then A^* is idempotent in $\mathcal{M}_n(\mathbf{B}_1)$.

For weighted cells A_1, A_2, \ldots, A_m in $A \in \mathcal{M}_n(S)$, they are called *collinear* if $\sum_{i=1}^m A_i \subseteq X$, where X is either an i^{th} row matrix or a j^{th} column matrix of A.

LEMMA 3.2. ([3]) Let A be a nonzero matrix in $\mathcal{M}_n(\mathbf{B}_1)$.

- (1) If all cells in A are off-diagonal, then A is not idempotent;
- (2) Assume there exists an off-diagonal cell $F \sqsubseteq A$ such that for any diagonal cell $E \sqsubseteq A$, E and F are not collinear. If A is idempotent, then F is in a pure frame in A.

COROLLARY 3.3. Let A_1, \ldots, A_m be all weighted cells in $A \in \mathcal{M}_n(\mathbb{S})$.

- (1) If all A_i are diagonal, then A is idempotent if and only if all A_i are idempotent;
- (2) If S has no zero-divisors and all A_i are off-diagonal, then A is not idempotent.

Proof. Let $A = \sum_{i=1}^{m} A_i$. (1) Suppose that all A_i are diagonal. It follows from Proposition 2.2 that A is idempotent if and only if

$$A_1A_1+\cdots+A_mA_m=A^2=A=A_1+\cdots+A_m$$

if and only if $A_i^2 = A_i$ for all $i = 1, \ldots, m$.

(2) If all A_i are off-diagonal, then by (3.1) A^* is just sum of off-diagonal cells in $\mathcal{M}_n(\mathbb{B}_1)$. It follows from Lemma 3.2-(1) that A^* is not idempotent. Therefore A is not idempotent by Proposition 3.1.

COROLLARY 3.4. Let S be a semiring which has no zero-divisors, and let A be idempotent in $\mathcal{M}_n(S)$. If A has an off-diagonal weighted cell A_{ij} such that A_{ij} is not collinear with any diagonal weighted cell in A, then A_{ij} is in a pure frame in A.

Proof. Since A is idempotent in $\mathcal{M}_n(\mathbb{S})$ with $A_{ij} \sqsubseteq A$, so is A^* in $\mathcal{M}_n(\mathbb{B}_1)$ with $E_{ij} \sqsubseteq A^*$ by Proposition 3.1. It follows from Lemma 3.2-(2) that E_{ij} is in a pure frame in A^* , equivalently A_{ij} is in a pure frame in A.

Let $A \in \mathcal{M}_n(\mathbb{S})$. For $1 \leq i, j \leq n$, \mathbf{R}_i and \mathbf{C}_j are said to be (i, j)-disjoint if $A_{ix}A_{yi} = O_n$ for any off-diagonal weighted cell A_{ix} in \mathbf{R}_i and for any off-diagonal weighted cell A_{yi} in \mathbf{C}_j .

LEMMA 3.5. Let A be idempotent in $\mathcal{M}_n(S)$. If \mathbf{R}_i and C_j are not (i, j)-disjoint, then A_{ij} is the weighted cell in A.

Proof. If \mathbf{R}_i and \mathbf{C}_j are not (i, j)-disjoint, then there exist off-diagonal weighted cells A_{ix} in \mathbf{R}_i and A_{yj} in \mathbf{C}_j such that $A_{ix}A_{yj} \neq O_n$. Since A is idempotent, $A_{ix}A_{yj} \sqsubseteq A$ by Lemma 2.5. It follows from Proposition 2.2 that x = y so that $a_{ij} \neq 0$. Hence A_{ij} is the weighted cell in A.

The number of nonzero entries of $A \in \mathcal{M}_n(\mathbb{S})$ is denoted by |A|.

LEMMA 3.6. Let S be a semiring which has no zero-divisors, and let A be idempotent in $\mathcal{M}_n(S)$ with $A_{ii} \sqsubseteq A$ for some i. If $|\mathbf{R}_i| = s + 1$ and $|\mathbf{C}_i| = t + 1$, then there exist exactly $s \cdot t$ frames in A dominating A_{ii} .

Proof. If s = 0 or t = 0, then the result is straightforward. Thus we can assume that $s, t \ge 1$. Since A is idempotent, Lemma 2.5 and Proposition 2.2 implies that for any off-diagonal weighted cells

$$A_{ki} \sqsubseteq R_i \sqsubseteq A \text{ and } A_{il} \sqsubseteq C_i \sqsubseteq A,$$

their product $A_{ki}A_{il} \sqsubseteq A$ so that $A_{kl} \sqsubseteq A$. Therefore, the four weighted cells A_{ii}, A_{ki}, A_{il} and A_{kl} are in a frame in A for each k, l such that $A_{ki} \sqsubseteq A$ and $A_{il} \sqsubseteq A$. Thus A has at least $s \cdot t$ frames such that each frame dominates A_{ii} . It follows from the definition of frame that A has at most $s \cdot t$ frames dominating A_{ii} .

Let $\mathbb{B} = \mathbb{B}_2$ be the Boolean algebra of a two element set S_2 , and let

$$A = \begin{bmatrix} 1 & \sigma_1 & \sigma_2 \\ \sigma_2 & 0 & \sigma_2 \\ \sigma_1 & \sigma_1 & 0 \end{bmatrix} \in \mathcal{M}_3(\mathbf{B}_2).$$
(3.2)

Then we can easily show that A is idempotent in $\mathcal{M}_3(\mathbf{B}_2)$. Notice that $|\mathbf{R}_1| = 2 + 1 = |\mathbf{C}_1|$. But A has only two frames dominating A_{11} . Thus, the condition that S has no zero-divisors in Lemma 3.6 is needed.

Let $A = [a_{ij}]$ be idempotent in $\mathcal{M}_n(\mathbb{S})$, where \mathbb{S} is a semiring which has no zero-divisors. If $a_{ii} \neq 0$, $|\mathbf{R}_1| > 1$ and $|\mathbf{C}_1| > 1$, then Lemma 3.6 shows that the i^{th} rectangle part of A exists.

THEOREM 3.7. Let S be a semiring which has no zero-divisors. If A is idempotent in $\mathcal{M}_n(S)$, then every weighted cell in A is in either a rectangle part or a line part of A.

Proof. It follows directly from Corollary 3.4 and Lemma 3.6.

The matrix A in (3.2) also shows that the condition(S has no zero-divisors) is needed in Theorem 3.7 because A has neither a rectangle part nor a line part.

4 Idempotent matrices over nonnegative integers

In this Section, we shall characterize idempotent matrices over nonnegative integers.

Let A be a nonzero idempotent matrix in $\mathcal{M}_n(\mathbb{Z}_+)$. Then A has at least one diagonal weighted cell in A by Corollary 3.3-(2). Furthermore we can easily show that if A_{ii} is a diagonal weighted cell in A, then we have $A_{ii} = E_{ii}$.

LEMMA 4.1. Let A_{ij} be an off-diagonal weighted cell in $A \in \mathcal{M}_n(\mathbb{Z}_+)$. If A_{ii} and A_{jj} are diagonal weighted cells in A, then A is not idempotent.

Proof. Since A_{ii}, A_{jj} and A_{ij} are weighted cells in A, we have that a_{ii}, a_{jj} and a_{ij} are all nonzero in \mathbb{Z}_+ . Then the $(i, j)^{\text{th}}$ entry b_{ij} of A^2 is greater than that of A because

$$b_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj} \ge a_{ii} a_{ij} + a_{ij} a_{jj} = (a_{ii} + a_{jj}) a_{ij} \ge 2a_{ij} > a_{ij}.$$

Hence A is not idempotent.

Let RP(i)[A] be an i^{th} rectangle part of $A \in \mathcal{M}_n(\mathbb{S})$. Then RP(i)[A] is called *pure* if it has only one nonzero diagonal entry.

COROLLARY 4.2. If RP(i)[A] is an i^{th} rectangle part of an idempotent matrix $A \in \mathcal{M}_n(\mathbb{Z}_+)$, then it is pure.

Proof. It follows from Lemma 4.1.

LEMMA 4.3. Let A be a matrix in $\mathcal{M}_n(\mathbb{Z}_+)$ with $A_{ii} \sqsubseteq A$ and $A_{jj} \sqsubseteq A$ for some indices i and j. If \mathbf{R}_i and \mathbf{C}_j are not (i, j)-disjoint, then A is not idempotent.

Proof. If $i \neq j$, the result follows from Lemmas 3.5 and 4.1. So we may assume that i = j. Since \mathbf{R}_i and \mathbf{C}_i are not (i, i)-disjoint, there exist at least two off-diagonal weighted cells $A_{ix} \sqsubseteq \mathbf{R}_i$ and $A_{yi} \sqsubseteq \mathbf{C}_i$ such that $A_{ix}A_{yi} \neq O_n$. By Proposition 2.2, we have x = y. Since $A_{xi} \sqsubseteq A$ and $A_{ix} \sqsubseteq A$, it follows from Lemma 2.5 that $A_{xi}A_{ix} \sqsubseteq A$ and hence $A_{xx} \sqsubseteq A$ by Proposition 2.2. That is, $A_{ix}, A_{ii}, A_{xx} \sqsubseteq A$. By Lemma 4.4, A is not idempotent.

Consider a matrix

$$A = \begin{vmatrix} 1 & 0 & 2 & 0 \\ 3 & 0 & 6 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{vmatrix} \in \mathcal{M}_4(\mathbb{Z}_+).$$

Then A is the sum of one 1st pure rectangle part and one 4th line part. But R_1 and C_4 are not (1,4)-disjoint. By Lemma 4.3, A is not idempotent.

THEOREM 4.4. Let A be a matrix in $\mathcal{M}_n(\mathbb{Z}_+)$. Then A is idempotent if and only if the followings are satisfied:

- (1) there exist integers $s, t \ge 0$ such that A is the sum of s pure rectangle parts and t line parts,
- (2) each pure rectangle part is idempotent,

- (3) each line part is idempotent,
- (4) for any $i, j \in \{1, \ldots, n\}$, \mathbf{R}_i and \mathbf{C}_j are (i, j)-disjoint.

Proof. It is routine to check that a matrix satisfying the four conditions is idempotent. To show the opposite implication, assume that A is idempotent. Let A_{ij} be a weighted cell in A. By Theorem 3.7 and Corollary 4.2, A_{ij} is in some pure rectangle part or some line part of A. Thus, there exist integers $s, t \ge 0$ such that A is the sum of s pure rectangle parts and t line parts. Thus (1) is satisfied. (4) follows from Lemma 4.1. (2) and (3) are obvious by (4).

Thus we have characterizations of all idempotent matrices over the nonnegative integers.

References

- R. B. Bapat, S. K. Jain and L. E. Snyder, Nonnegative idempotent matrices and minus partial order, Linear Algebra Appl. 261(1997), 143-154.
- [2] L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160(1992), 217-229.
- [3] L. B. Beasley, A. E. Guterman, K. T. Kang and S. Z. Song, Idempotent Boolean matrices and minus order majorization, Linear Algebra Appl. To appear.
- [4] J. S. Golan, Semirings and their applications, updated and expanded version of the theory of semirings, with applications to mathematics and theoretical computer science, Kluwer Academic Publishers, Dordrecht, 1999.
- [5] D. A. Gregory and N. J. Pullman, Semiring rank: Boolean rank and nonnegative rank factorizations, J. Combin. Inform. System Sci., 8(1983), 223-233.
- [6] K. H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathematics, V.70, Marcel Dekker, New York, 1982.

- [7] S. Kirkland and N. J. Pullman, *Linear operators preserving invariants of non*binary matrices, Linear and Multilinear Algebra, **33**(1992), 295-300.
- [8] V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and its Applications, Mathematics and its Applications, V. 401, Dordrecht: Kluwer Academic Publishers, 1997.
- [9] S.-Z. Song and K.-T. Kang, Types and enumeration of idempotent matrices, Far East J. Math. Sci. 3(2001), 1029-1042.