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SPECTRAL MAPPING THEOREM
FOR THE WEYL SPECTRUM

YOUNGOH YANG AnD JIN A LEE

ABSTRACT. In this paper we show that the Weyl spectrum of a M —hyponormal
operator satisfies the spectral mapping theorem for analytic functions and
then answer an old question of Oberai. Also we show that the set of op-
erators T satisfying w(T) = 0.(T) is closed in B(H), and invariant under
compact perturbation. In particular we show that the Weyl spectrum of a
operator T satisfying w(T') = o.(T) satisfies the spectral mapping theorem
for analytic functions.

0. Introduction

Let H be an infinite dimensional Hilbert space and write B(H) for the
set of all bounded linear operators on H and K for the set of all compact
operators on H. If T € B(H), we write o(T) for the spectrum of T, n(T)
for the set of eigenvalues of T, and my(T) for the isolated points of o(T)
that are eigenvalues of finite multiplicity. If K is a subset of C, we write
iso K for the set of isolated points of K. An operator T € B(H) is said
to Fredholm if its range ran T is closed and both the null space ker T and
ker T* are finite dimensional. The indez of a Fredholm operator T, denoted

by #(T), is defined by
#(T) = dimker T — dimker T*.

It was well known ([3]) that ¢ : F — ZU{+o0} is a continuous function where
the set F of Fredholm operators has the norm topology and Z U {#c0} has

Key words and phrases. Fredholm, Weyl, M-hyponormal, M-power class (V)
1991 Mathematics Subject Classification. 47A10, 47A53, 47B20,.



12 x B B B H R

the discrete topology. The essential spectrum of T, denoted by o¢(T), is
defined by
0e(T) = {A € C: T — Al is not Fredholm}.

A Fredholm operator of index zero is called a Weyl operator. The Weyl
spectrum of T, denoted by w(T), is defined by

w(T)={A € C: T — Al is not Weyl}.
It was shown ([1]) that for any operator T, 0.(T) C w(T) C o(T),
w(T) = Ngexo(T + K)

and w(T) is a nonempty compact subset of C.
For example, define an operator T on [ by

1 1

T(J.‘l,l'g’- .. ) = (_*L'l’ 5;};2, 5:1;3,. .. )
Then o(T) = {0, 1, %a %,"'}, and w(T) = 0,(T) = {0} since T is compact.

Hence w(T) = o.(T). However, consider the weighted shift U on l; given by
U($17x27"' ) = (0,1‘],1’2,1‘3," )

Then U is hyponormal, w(U) = o(U) = D(= the closed unit disc) and
0.(U) = C(= the unit circle). Hence w(U) # 0.(U) and so we note that
w(U) # 0.(U), even if T is hyponormal.

Recall ([12]) that an operator T € B(H) is said to be M—hyponormal if
there exists M > 0 such that

(1) (T = 2)"zl| < M|(T — 2)z|

for all z in H and for all z € C.
Every hyponormal operator is M —hyponormal, but the converse is not
true in general: for example, consider the weighted shift S on I given by

S(J,'],.'Ez,"') = (0,2$1,I2,IE3,"').
If T is Fredholm, then by (1)

(2) T M—hyponormal = (T) < 0.
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It was known that the mapping T — w(T') is upper semi-continuous, but not
continuous at T'([10]). However if T,, — T with T,T =TT, foralln € N
then

(3) limw(T,) = (7).

It was known that w(T') satisfies the one-way spectral mapping theorem for
analytic funcions: if f is analytic on a neighborhood of ¢(T') then

(4) w(f(T)) C f(w(T)).

The inclusion (4) may be proper(see [2, Example 3.3]). If T is normal then
0¢(T) and w(T') coincide. Thus if T is normal since f(T) is also normal, it
follows that w(7T') satisfies the spectral mapping theorem for analytic func-
tions.

In this paper we show that the Weyl spectrum of a M —hyponormal oper-
ator satisfies the spectral mapping theorem for analytic functions and then
answer an old question of Oberai. Also we show that the set of operators
T satisfying w(T) = 0.(T) is closed in B(H), and invariant under compact
perturbation. In particular we show that the Weyl spectrum of a operator T
satisfying w(T) = o.(T) satisfies the spectral mapping theorem for analytic
functions.

1. Weyl spectrum and spectral mapping theorems

Theorem 1. If S and T are commuting M —hyponormal operators, then

(5) S, T Weyl < ST Weyl.

Proof. If S, T are Weyl, then S,T are Fredholm and ¢(S) = (T) = 0. By [3],
ST is Fredholm and by the index product theorem, i(ST) = «(S)+:(7) = 0.
Hence ST is Weyl.

For the backward implication of (5) we note that if ST = TS, then
ker SUkerT C ker ST and ker S* Uker T* C ker(ST)*. If ST is Weyl, then
dimker S,dimkerT < oo and dimker $*,dimkerT* < oo. Also ran S and
ran T are closed by [5, Theorem 3.2.2]. Hence S, T are Fredholm. Since S and

T are M —hyponormal, by (1) #(S) = i(T) = 0 since 0 = «(ST) = «(S)++(T).
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If the “M —hyponormal” condition is dropped in the above theorem, then
the backward implication may fail even though 77 and T, commute: For
example, if U is the unilateral shift on I3, consider the following operators

onl, @l : T =U®land T, =T U*.
Theorem 2. If T is M —hyponormal and f is analytic on a neighborhood
of o(T), then w(f(T)) = f(w(T)).
Proof. Suppose that p is any polynomial. Let
P(T)— M =ao(T — 1 I)--- (T — pn1).

Since T is M —hyponormal, T— ;I are commuting M —hyponormal operators
for each : = 1,2,--- n. It thus follows from Theorem 1 that

A ¢ w(p(T)) < p(T) — M = Weyl
= ao(T — 1) (T — pnI) = Weyl
<= T — ;I = Weyl foreach: =1,2,--- ,n
= u; ¢ w(T)foreach:=1,2,--- |n
<= ) ¢ p(w(T))

which says that w(p(T')) = p(w(T)). If f is analytic on a neighborhood of
o(T), then by Runge’s theorem([3]), there is a sequence (p,) of polynomials
such that f, — f uniformly on ¢(T'). Since p,,(T) commutes with f(T), by
(8]

f(w(T)) = lim py(w(T)) = limw(p,(T)) = w(f(T)).

Corollary 3. If T is hyponormal and f is analytic on a neighborhood of
o(T), then w(f(T)) = f(w(T)).
We say that Weyl’s theorem holds for T if

w(T) = U(T) - WOQ(T).

There are several classes of operators including hyponormal operators for
which Weyl’s theorem holds. Oberai has raised the following question: Does
there exist a hyponormal operator T such taht Weyl’s theorem does not hold
for T? 7 Note that T? may not be hyponormal even if T is hyponormal([4,
Problem 209]). We will show that Weyl’s theorem holds for p(T') when T is
hyponormal.

Recall ([9]) that T € B(H) is said to be isoloid if iso o(T) C mo(T).
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Theorem 4. ([9]) Let T € B(H) be isoloid. Then for any polynomial p(t),
P(o(T) — 7oo(T)) = a(p(T)) = moo(p(T)).

Corollary 5. If T € B(H) is hyponormal, then for any polynomial p on a
neighborhood of o(T) Weyl’s theorem holds for p(T).

Proof. By [10], T is isoloid and Weyl’s theorem holds for any hyponormal
operator. Hence by Theorem 2 and Theorem 4,

w(p(T)) = p(w(T)) = p(a(T) — m0o(T)) = o(p(T)) - mo0(p(T))
Therefore Weyl’s theorem holds for p(T).
Lemma 6. ([1],[3]) For any operator T in B(H),

w(T) =0 (T)U 6(T) (disjoint union),

where §(T) = {A : T — X is Fredholm and (T — \) # 0}.

For example, if U is the simple unilateral shift, then o (U) = {)\ : |A\] = 1},
and §(U) = {A: |} < 1}

The above Lemma clearly show that o.(T) = w(T') if and only if the open
set 8(T) is empty

Theorem 6. The set of operators T satisfying w(T) = o.(T) is closed in
B(H) and invariant under compact perturbations.

Proof. Suppose w(T,) = 0.(T;,) for each n and T, — T in norm topology.
It suffices to show that 0.(T) = w(T). If ¢.(T) # w(T), then by Lemma 5
there exists A € C such that T — X is Fredholm of nonzero index. By [6,
Theorem 4.5.17], there exists an € > 0 such that if |T— A — S|| < ¢, then S is
a Fredholm operator. Also there exists an integer N such that for n > N,
we have

(T =2 = (Ta = Ml < 5.

Thus T, — A is Fredholm for n > N;. Since the index i is continuous,
there exists an integer N, such that for n > N, i(Tp, — A) # 0. Hence
for n > N = max(N;,N,), T, — A is Fredholm of nonzero index and so
0e(Tn) # w(T,) by Lemma 5. This is a contradiction. Thus 0e(T) = w(T).

If T € W and K is compact, w(T + K) = w(T) by [1, Corollary 2.7} and
0e(T) = 0¢(T + I). Thus the set of operators T satisfying w(T) = a.(T) is
invariant under compact perturbations.
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Lemma 7. ([3]) If T is Fredholm and K is compact in B(H), then T + K
is Fredholm and (T + K) = (T).

Theorem 8. If T in B(H) is of the form normal + compact, then w(T) =
oe(T).

Proof. Let T = N + K, where N is normal and K is compact. If w(T) #
0¢(T), then by Lemma 6, there exists A € C such that T — X is Fredholm
of nonzero index. But by Lemma 7, T — A — K is Fredholm and (T — \) =
(T — A= K)=1iN — X)) =0. This is a contradiction.

From this theorem we know that the unilateral shift U is not of the form
normal + compact.

Theorem 9. w(T) = 0(T) if and only if there exists a compact operator

K such that o(T + K) = o(T).

Proof. 1f o(T + K) = 0.(T) for some compact operator It, then
w(T) = Ngexo(T+ K) C o (T).

Since ¢.(T) C w(T), w(T) = o.(T).

Conversely if 0.(T) = w(T), then by [11, Theorem 4] there exists a com-
pact operator K such that o(T + K) = w(T). Hence o(T + K) = w(T) =
a.(T) for some compact operator I{.

Theorem 10. If T satisfies w(T) = 0.(T) and f is analytic on a neighbor-
hood of a(T), then w(f(T)) = f(w(T)).

Proof. Suppose that p is any polynomial. Then #(p(T") = p(#«(T)) where =
denotes the natural map of B(H) onto B(H)/K. By the spectral mapping
theorem,

p(w(T)) = p(oe(T)) = oe(p(T)) € w(p(T)).

But for any operator T € B(H), w(p(T)) € p(w(T))([1, Theorem 3.2}).
Therefore w(p(T')) = p(w(T)) for any polynomial p.

If f is analytic on a neighborhood of o(T), then by Runge’s theorem([3)),
there is a sequence (p,,) of polynomials such that f, — f uniformly on o(T).
Since p,(T) commutes with f(7T'), by [8] ”

w(f(T)) = limw(pa(T)) = limp,(w(T)) = f(w(T)).
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Theorem 11. If T satisfies w(T) = o.(T) and f is analytic on a neighbor-
hood of o(T), then w(f(T)) = o.(f(T)).

Proof. Suppose that p is any polynomial. Then by Theorem 10 and the
spectral mapping theorem, w(p(T)) = p(w(T)) and w(p(T)) = p(w(T)) =
p(oe(T)) = ae(p(T)).

If f is analytic on a neighborhood of o(T'), then by Runge’s theorem([3]),
there is a sequence (p,,) of polynomials such that f,, — f uniformly on o(T).
Since p,(T) commutes with f(T), by [7] and Theorem 10,

W((T)) = f(u(T)) = lim pu(w(T)) = lim pu(oe(T))
= nli_l};o Ue(pn(T)) = Ue(f(T))-

Thus f(T) satisfies w(f(T)) = o.(f(T)).
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