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ABSTRACT

We determine the minimum permanents on certain faces of , for the fully
indecomposable (0,1) matrices containing an identity submatrix of some order. We
also determine whether the given fully indecomposable (0,1) matrices are either
cohesive and barycentric.

1. INTRODUCTION AND PRELIMINARIES

The recent solution {3] of the van der Waerden conjecture for the
minimum permanent of matrices in £, the polytope of n-square doubly
stochastic matrices, suggests the possiblity of determining the minimum
permanent of matrices for faces of Q. Several authors have already consid-
ered this problem for some faces [1-8].

Let D =[d;;] be an n-square (0, 1) matrix, and let

QD)= {X = [x,;] €Q,}|x;;= 0 whenever d,; = O}.

Then Q(D) is a face of the polytope €, and hence, being a compact subset
of a finite dimensional Euclidean space, contains a matrix A such that
per A < per X for all X € Q(D). Such a matrix A will be called a minimizing
matrix on Q(D).
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Brualdi [1] defined an n-square (0, 1)}matrix D to be cohesive if there is a
matrix Z in the interior of (D) for which

perZ =min{perX: X € Q(D)}.
And he defined an n-square (0, 1)}matrix D to be barycentric if
perb(D)=min{perX: X € @(D)},

where the barycenter b(D) of (D) is given by

1
L P

b(D) =
perD P<D

where the summation extends over the set of all permutation matrices P with
P < D and per D is their number.

In this paper we consider faces (D), where D is a (0,1) matrix having
I, as a submatrix, for some k. For some of these faces we are able to
determine the minimum permanent and whether D is cohesive or bary-
centric. We also provide an example of a cohesive, nonbarycentric matrix in
Theorem 2.3. Another example has been given by Foregger [12}.

Let A be an n-square nonnegative matrix. If column k of A contains
exactly two nonzero entries, say in rows i and j, then the (n — 1)square
matrix C(A) obtained from A by replacing row i with the sum of rows i and
j and deleting row j and column k is called a contraction of A. If A has a
row with exactly two nonzero entries, then C(A')! is also a contraction of A,
where A’ is the transpose of A.

Lemma 1.1 (Foregger (4]). Let D =[d,;] be an n-square fully indecom-
posable (0,1) matrix, and let A={[a;;] be a minimizing matrix on (D).
Then A is fully indecomposable, and for (i, j) such that d;; =1,

perA(i|j)=perA  if a;;>0, (1.1)

perA(ijj) > perA  if a;;=0. (1.2)
1 i

LeEmMa 1.2 (Foregger [4]). Suppose A € Q,, is fully indecomposable and
has a column (row) with exactly two positive entries. Then C(A) is

(n — 1)square doubly stochastic and fully indecomposable, and

2perA > 2perA = perC(A) > per C(A),
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where A___(C( A))isa minimizing matrix on Q(A) (on Q(C(A)), respectively)
and C(A) is a contraction of A.

Now, Lemma 1.1 has been strengthened by Minc [8], with the aid of
Egorycev’s reformulation (3] of Alexandrov’s inequality

(perA)®> per[a,,...,a,_,,a,_,] xper{a,,...,a,,a,]

for any nonnegative matrix A=[a,,...,a,), as follows.

Lemma 1.3 (Minc (8]). Let A =[a,;] be a minimizing matrix on Q(D),
where D=[d,,...,d,] is an n-square (0,1) matrix. If, for some k <n,
dj=--- =d;, and if, for some i, a;+ -+ +a; #0, then perA(ilj,) =

perA fort=1,... k.

By the linearity, with respect to each column, of the permanent function,
Lemma 1.3 implies the averaging method, namely: If A =[a,,...,a,] is a
minimizing matrix on (D), D=[d,,...,d,], and if d, = d,, then

per[ua1+ vay,va, + uaz,as,...,an] = perA

forany u,v>0withu+o=1.
Throughout this paper, K, ,» for a pair (p,q) of positive integers, will
denote the p X g matrix all of whose entries are 1, which will be denoted by

K, in case that p=g; and I, will stand for the identity matrix of order k.

2. RESULTS

ProposiTioN 2.1. Let

(2.1)

be an (m + n)square (0,1) matrix, for n> 2. Then W,
and the minimum permanent on W, ) is

_a is not cohesive,

(m-1)! . (n-1)""!

mm- 1 nt

(2.2)

ada

- -
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Proof. Choose A so that it has the minimum permanent on the face
Q(W,, ). Then A is fully indecomposable by Lemma 1.1. Since the first m
columns of W, . are the same, we can replace each of the first m columns
by their average, by Lemma 1.3. Then the resulting matrix Z has the same
permanent as A and has the following form:

1 |
_Km—l m Om—l n
m . .
a --- a | mby mb, --- mb,
Z= )
b, b, x, O
b, . b;l 0 X,

where mb}. =1- x; for j=1,...,n. Since Z is fully indecomposable, bj and

x; are not zero fro j=1,...,n. Therefore

per Z = per Z(1|1) = per Z(m|i)

for i=m+1,...,m+n, by Lemma 1.1. In order to know the relation
between b, and b,, we calculate

-1

perZ(m|m+l)=m!(—-) bixoxy - x
m

m-—1
per Z(mjm +2)=ml(—) byx x5+ x,.
.m/
Then their equality implies that x, = x,. Similarly, we have x, =z, = x and
by=b;=(1—x)/m for all j=2,..,n Using a=[1—-n(1—-x)j/m, we

have x #{ for n > 3 and

0= perZ(1|1) — perZ(m|m +1)

=(m—1)!(;)m-1x"'1[2nx2+(1—3n)x+ n—1+x]

—(m- 1)!(%)m_1x"-l(2x— 1)(nx —n +1).
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Hence we have x =(n—1)/n for n > 2 and a = 0. Therefore W  is not
cohesive, and we calculate

perZ = per Z(m|m +1)

_ (m-1)! ' (n—-1)"""

— s
m™ 1 n"

as required.
Brualdi {1] found the minimum permanent on (W, ,_, ). Hence we
have generalized his result in Proposition 2.1.

LEmMma 2.2. Form > 2, let

' =
Vm.3 =

(2.3)

(= e 3
[N

SO -

Then V', is not cohesive, and the minimum permanent on the face Q(Vy,) is
%. For m >3, V, 5 is cohesive and the minimum permanent on the face
UV, 5) is

(m—l)!(m———lr—n_._,ink)m—z((m—l)b2+

1-mb

(m—1-2mb)]|,

me
(2.4)
where b is the unique real root of the equation:

mi(m?+m+2)b® - 2(m +1)m®b2 +2m(m2 - )b—(m - 1)>=0. (2.5)

Proof. Using the averaging method on the first m rows and first m
columns of a minimizing matrix on the face @(V,!;), we may write a
minimizing matrix A as follows:
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b, b !
1 %2
ak,, :
1
A= b, b, ;
b, by|x;, 0 0
b, by | 0 x, 0
1 1
— -0 0 0
- m m -4

From Theorem 4.4 of [6], it follows that x,> 0 and x, > 0. Then
0=perA(m +1|m +1) — perA(m +2|m +2)

=(m~— 1)!0’"_2[("‘ - 1)(”2— by ) (b, + by)+(x,— xl)a]
m—1)?
=(m-1lam™ ¥(x, - xg)((T)— - am).

Hence we know that x, = x, or am®=(m — 1)
For m = 2, we have x, =x, =1 and a = 0 from per A(13) = per A(14) =
per A(1}5). Thus the minimum permanent is %, and V,'; is not cohesive.
Let m > 3. Assume that x, # x,, so that am® = (m — 1)2 Then we have

0 =perA(1|m +1) — perA(1jm +2)

=(x,—x5)(m - 2)!(m—":2ia""3[(m -2)b,b, —a].

The assumption x, # x, implies that (m — 2)b,b, = a. Since by, b, are less
than 1/m, b,b, must be less than 1/m> But then

a (m—1)° 1 -
= —_— .
m—2 (m—2)m3>m2 172

b,b, =

This is a contradiction. So we conclude x, = x,. Therefore,
0 = perA(m +2jm +2) — perA(1|m +2)

B (m-1)!

— a""s[ma{(m—l)bf+ax,}
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- (m-1)b,{(m-2)b?+ axl}].
Thus, the quantity in the brackets is zero. Using

l1/m-1 \
xl=1—mb1 and a=;(T—2b1),

we obtain

2(m2—1)b _ (m-1)* _

0.
m2 1 m3

f(b)=(m*+m+2)b3-2(m +1)b2+

Since f'(b,)> 0 and f(0) <0, and since

1 m-—1
m m
f(b,) =0 has a unique real root in (0,1/m). Therefore the minimum value

on the face Q(V,, ;) is perA = per A(m +2|m +2), which is the value given
by (2.4) and (2.5). ]

TueEOREM 2.3. Form > 2, let

K, K,
Vm.3 = [ 2

2.6
K3.m 13 ( )

be an (m + 3)square (0,1) matrix which contains I 5 as a submatrix. Then
we have a minimizing matrix form on the face QV,, ;) as follows:

aK, | b, b, b
by |z, 0 0
b 0

(5]

by | 0 0 =x,
where b, (b}) is a column (row) vector with b; as all its entries for i=1,2.
This form A shows that V.3 is cohesive and not barycentric. In particular,

(1) the minimum permanent on the face Q(V, ;) is

1(1-2b)*(1-5b +12b?), (2.7)
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where b is the unique real root of the equation
44b° - 16b>+9b -1 = 0; (2.7-1)
(2) the minimum permanent on the face UV, ;) is
m!a’"_z[(m—l)mb4+2maxb2+x2a2], (2.8)

where ma =1-3b, x=1—mb, and b is a real root of

. 27 57 54
m?>+6m +20+ —)bs— (Sm +21+ —+ —
m m m-

31 62 27
b*+ |5+ —+ — + —|b°
m m* m

5 24 27 b2 3 9'\|b 1 0 (2.8.1
==+ =+ =+—=lb-—= 8-
(m m2+m3) (m2 m® | m? ( )

form > 5.

Proof. Using the averaging method on the first m rows and the first m
columns of a minimizing matrix on the face 2V, ;), we may write a

minimizing matrix A as follows:

a=] im0 0 (2.9)
by | 0 x, O
b, 10 0 x,

where Bi (77{ ) is a column (row) vector with b, as all its entries for i = 1,2, 3.
If x; were zero, then the minimum permanent would equal (2.4) in Lemma
2.2 for m>3 or §; for m=2. For m =2, perA(5[5) = & < % = perA. For
m> 3,

per A — per A(m +3|m +3)
= perA(m +2|m +2) — perA(m +3|m +3)

=(m- 1)!a’“”2[bf{(m —1) = m*(m ~1)b} — m*a}

+xa(1 - m*b} — mxa))|
>0,



since
(m—1) —m*(m ~1)b} —m%xa=m(m+1)b,(1 - mb,) >0

and
0 1
~m’b} —mxiga= - (m+2)mbi+(m+1)b,+ — >0
m

for 0 <b;<1/m. This contradicts Lemma 1.1. Hence x, is not zero.
Similarly, x, and x, are not zero. Since A is fully indecomposable, a and
by, by, b, are not zero. So V,, ; is a cohesive matrix.

The barycenter of B, ;is

b(V, ,) K B s (2.10)
m3/ bK;, xI; | '
where
m®—-3m?+5m -2 mi-—m+1 m*+m+1
N m(m®*+2m+1) ~ T mi+2m+1’ T e2mal
(2.10-1)

Since per b(V,, 3)(1|m +3) — per b(V,, ;}(m +3|m +3) <0, b(V,, ;) is not a
minimizing matrix. So V,, ; is not ba.rycentnc
In order to find a minimizing matrix, we calculate

0=perA(m +1|m +1) — perA(m +2|m +2)
= mlma™ (b, - b,)[(b, + by) {(m — 1)b} — mab, +a }
- a(a — mab, + mb?)].
Since b, + by =1 — ma — b,, the equation becomes
m!ma™%(b, ~ by)[(m — 1)b3 - (m — 1)(1 - ma)b3
+a(m+1)(1-ma)b,—a(l—a—ma ]— . (2.11)

Similarly, we have
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0=perA(rﬁ+1|m+1)— perA(m +3|m +3)
= mlma™~*(b, - by)[(m ~ 1)b} - (m — 1)(1 - ma) b}
+a(m+1)(1-ma)b,— a(l—a~-ma)], (2.11-1)
0 = per A(m +2|m +2) — perA(m +3|m +3)
= mlma™*(b, — b;)[(m — 1)b} — (m — 1)(1 - ma)b}
+a(m+1)(1-ma)b,—a(l—a—-ma)]. (2.11-2)
If by, by, and b, are all distinct, then they are the real roots of
g(b) =(m—-1)b° - (m -1)(1-ma)b*+a(m +1)(1 - ma)b
—a(l-a—ma)=0,

from (2.11), (2.11-1), and (2.11-2). Therefore, b, + b, + by =1 — ma, b,b, +
byby + byb, = [1/(m — 1)]a(m + 1)(1 — ma). Hence

0<b}+bZ+b2=(b,+b,+b,)" — 2(bby + byby + byb,)

m-—1

- (1= ma)|

m*+m+2
a-—-1

Since ma is less than 1, we have

m-—1
0<a<m?_+—m+2. (212)

Since b), by, and b; must be in (0,1/m), we have g(0)g(1/m) < 0. That s,
a[(m +1)a — 1]{a — (m?* — 2m +1)/m®] < 0. Since a > 0, we have

m?—2m+1 1
<a< .
m° ¢ m+1

(2.13)

From (2.12) and (2.13), we have a contradiction that (m —1)/(m? + m +2)
<(m®—2m +1)/m> Hence by, b,, and b, are not all distinct. Therefore a
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minimizing matrix on the face Q(V,, ;) is of the form A in (2.9) with b, = b,.

(1) Now, let us consider the case m = 2. Since b,, b, are not zero, we have

&y

0= per A(13) - per A(14)

= (b, - by)[2(2b, +3)b2 — 4b, +1 - b,].

But the quantity in the brackets above is positive for arbitrary b,, b, in

(0, 3). Hence we have b, = b, and x, = x,. Since a # 0,

0 = per A(1]1) — per A(1]3)

=(1-2b))( —22b} +16b% - 2b, +1).

Since 0 <b, <3}, we have h(b,)=22b}—16b}+32b,—1=0. Since
R'(b;)>0, h(0)= —1 <0, and h(})=1>0, h(b,) has a unique real
root in (0, 3). Hence we have the minimum permanent on the face
(V,,3) from per A = per A(1|1), in agreement with (2.7) and (2.7-1). [We
remark that this minimum permanent on the face Q(V,,) is about
0.0478105 when b, = 0.295134, a = 0.057299, and x, = 0.409732.]

Let m > 5. A minimizing matrix is of the form A in (2.9) with b, = b,.
Assume b, # b,. Then g(b;) =0 must have at least one real root in
(0,1/m) from (2.11).

Case 1. g(b;) =0 has one real root in (0,1/m) and two real roots in
[1/m, ). This case cannot hold, from (2.12) and (2.13).

Case 2. g(by)=0 has two real roots in (0,1/m) and one real root in
[1/m, ). Let us change ma by 1— b, —2b, at g(b;)=0.
Then we have

m*+3m+4 2m* +6m +4 7

- b, + S b;

F(by)=— b3 +

m m-

(m2+3m+4) .

b+
1 mz 1 m2

+

m+1 m?2+5m +4 2(m +2)
b - bs

1
+ F(l—bl)[l—(m +1)b,] =0.

Since the product of three real roots of F(b,) = 0 is positive, we

—

Prapy
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have 0<b,<1/(m +1). Hence F(0)>0 and F(l/m)=
—(b,/m +4/m>) < 0. Therefore F(by) =0 cannot have two
real roots in (0,1/m), so g(b,) = 0. This case cannot hold.
Case 3. g(b,)=0 has three real roots in (0,1/m). This case cannot
hold, from (2.12) and (2.13).
Case 4. g(b;)=0 has one real root in (0,1/m) and two imaginary
roots. Then we have (m-1)2/m®<a<1/(m+1), since

FOYA1/m) < 0. Consider
0 = per A(1jm +3) — per A(m +3|m +3)
= mla™~3[(m — 1)b3bZ((m — 2)b, — ma )
+ ax,b3{(m ~ 1)b, — ma)
+ax,bi{(m —1)by — ma} + x x,0%(b; - a)).
From this equation, we have that

——zb b
< .
m 3 a< 3

And similarly, we have

m-—2

b, <a<b, for i=1,2,3.

Sol=ma+ b, + by + b;>(m +3)a and hence a <1/(m +3).
Since a satisfies (2.13), we have a contradiction as follows:

1 (m—-1)° 1
< <a<
m+3 m? m+1

for m > 5.

By cases 1 to 4, we have b, = b, = b,. Hence we have (2.8-1) from the
equality of perA(l|m +3) and per A(m +3|m +3). And the minimum per-
manent on the face Q(V, ;) is perA = perA(m +3|m +3), in agreement
with (2.8) and (2.8-1). =

We remark that cases 1-3 cannot hold for m = 3,4. But we do not know
whether or not case 4 holds for m = 3,4.

ProrosiTiON 2.4. Forn>1, let
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be a 2n — 1 square (0,1) matrix. Then the minimum permanent on the face
QU) is ((n— 1)l /"~ N2, and U is barycentric.

Proof. Using the averaging method, we may write a minimizing matrix
A on the face Q(U) as follows:

On—l bl B?. bn
bi | x, 0
A= P X, ;
i b, | 0 x, |

where b, (b!) is a column (row) vector of order n — 1 with all entries b,
Since A is fully indecomposable, each b; is not zero. If some x, were zero,
say x; =0, then b;=1/(n—1). Since not all x; are zero, we may assume
that x, is not zero without loss of generality. Then b, = (1 — x,)/(n — 1) < b,,
and

perA(n|n) — perA =perA(n|n) — perA(n+1|n +1)
= [(n = 1)ty - b,](by = b)) (b, + by) <0.

This contradicts Lemma 1.1. Hence x, is not zero. Similarly, not all x, are
zero. Therefore b, = b, from the equation

0=perA(n|n) — perA(n+1jn+1)
= [(n =)ty )by = b)) (b, + by).
Similarly, we have that all x;,=b,=1/n for i=1,...,n. Then A is the

barycenter of 2(U). And the minimum permanent on the face QU) is
per A = perA(n|n) =[n —1)!/n"" ]2, as required. ]

For n > 3, let

0, K,, K, K,,
U2,n_ K"‘2 I s Vz‘n— K, I (214)

- -

- demn o AP
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be (n +2)square (0,1) matrices that contain the identity submatrix of
order n.

THEOREM 2.5. Forn >4, if

A<D b | = 0 (2.15)

is @ minimizing matrix on the face Q(U, ,), then x; and b, are nonzero for
=1,....,n (i.e, U,, is cohesive). Moreover, a local minimum for the
permanent on the face QU, ) occurs at the barycenter b, ,), and

9 _ _9\n-2
perb(0y,) = 2n D =BT

n

Proof. Since U, , is fully indecomposable, b, is not zero for i =1,..., n.
If some x; =0, say x, = 0 without loss of generality, then the 3rd column has
only two nonzero entries b,. Then the contraction C(A) of A on the 3rd
column is

0 0|2, 2, --- 2b]

by b,] 0 0 - 0
C(A)=|by by| x, 0 -+ 0

| b, b.,, 0 0 X,

From Lemma 1.2, we have
2perA > per C(A), (2.16)
where C(A) is a minimizing matrix on the face Q(C(A)). Also we have that

—_ (n—2)"—2

per C( A) = W (2.17)

by Proposition 2.1. But the barycenter b(U, ) of (U, ,) equals A in (2.15)
with b,=1/n, x,=(n—-2)/n fori=1,..., n. By (2.16) and (2.17), we have
a contradiction as follows:
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(n—2)"? >22(n-1)(n-2)"‘2
2("—1)"—1 nn-vl

per C(A) =

=2perb(U, ,) > 2perA > per C(A)

for n > 4. Therefore x; is not zero for i = 1,..., n. That is, U, ,, is a cohesive
matrix.

Now, in order to obtain a local minimum permanent at the barycenter,
we assume that

(n—=3)b,<x,<(n-1)b, (2.18)

for i=1,...,n. Then we obtain 1/(n+1)<b, <1/(n — 1) from the doubly
stochastic property for i =1,..., n. And

0 = per A(1j3) — per A(114)
=2(b,— by)(b3x, - x, +x3bxg - x

+ e dxgx, o x, B2 bybyrg - x,). (2.19)

But the interior of the second parenthesis is greater than

n-—1 n—1
b314 ...xn(ba—mblb2)+x3b4x5---xn(b4—_n_2b1b2)
n—1
+ PP +xsx“...xn_lb"(bn—mblb2) >Oa
since
b ﬂ“lbb 1 1 0
a2t T T a-2)(n-1)

for i=3,4,...,n and n > 4. Hence b, = b, from (2.19). Similarly, we have
that b,=b,=1/nand x,=x,=(n—2)/n forall i=2,..., n. In this case A

is the barycenter of Q(U, ,) and a local minimum permanent on Q(U, ,) is
obtained as required. |

REMARk 2.6. For n =3, 4, and 5, it can be shown that U, , is in fact
barycentric. We omit the proof.

THEOREM 2.7. For n> 4, a local minimum permanent on the face

- aaskin B0 B ccstelBn. W
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UV, ) for V, , in (2.14) is

2(n—1)(n-2)" "2 (2.20)

n
which occurs at the barycenter b(U, ) of the face QU, ) in Theorem 2.5.

In particular, the value in (2.20) is the global minimum permanent for
n=4or35.

Proof. Assume that

bl b2 bn

b, b, b,

_|by b xy O 0
Z= b, by| 0 x, 0 (2.21)

_b;, b;, 0 . X,

is a minimizing matrix on the face (V, ). Then all x; and b, are not zero
for i=1,2,..., n, by the same method as in the proof of Theorem 2.5. And
there exists some i such that x, > 2b,, We may assume that x, > 2b, without
loss of generality. If a # 0, then per Z(1|1) = per Z and hence

0=perZ(1]1) — perZ(1jn +2)

=(x,—2b, ) (axyxy - %0 + bixaxs 1,y

2
SRR T3t PR xn—2)
2
+hixxy o x,y

> 0.

This is a contradiction. So @ must be zero in (2.21), and the form A in (2.13)
becomes a minimizing matrix on Q(V, ). Hence we have a local minimizing
matrix b(U,, ), and have a local minimum permanent in (2.20) on the face
2(V,, ,) by Theorem 2.5.

In particular, Remark 2.6 implies that the value in (2.20) is the global
minimum permanent for n = 4 and 5. |
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